Publications by authors named "Dubyak G"

Ninjurin-1 (NINJ1) is an active executioner of plasma membrane rupture (PMR), a process previously thought to be a passive osmotic lysis event in lytic cell death. Ninjurin-2 (NINJ2) is a close paralog of NINJ1 but cannot mediate PMR. Using cryogenic electron microscopy (cryo-EM), we show that NINJ1 and NINJ2 both assemble into linear filaments that are hydrophobic on one side but hydrophilic on the other.

View Article and Find Full Text PDF

Inflammasomes serve as critical sensors for disruptions to cellular homeostasis, with inflammasome assembly leading to inflammatory caspase activation, gasdermin cleavage, and cytokine release. While the canonical pathways leading to priming, assembly, and pyroptosis are well characterized, recent work has begun to focus on the role of post-translational modifications (PTMs) in regulating inflammasome activity. A diverse array of PTMs, including phosphorylation, ubiquitination, SUMOylation, acetylation, and glycosylation, exert both activating and inhibitory influences on members of the inflammasome cascade through effects on protein-protein interactions, stability, and localization.

View Article and Find Full Text PDF

Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (T17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs), a web-like structure of cytosolic and granule proteins assembled on decondensed chromatin, kill pathogens and cause tissue damage in diseases. Whether NETs can kill cancer cells is unexplored. Here, we report that a combination of glutaminase inhibitor CB-839 and 5-FU inhibited the growth of PIK3CA-mutant colorectal cancers (CRCs) in xenograft, syngeneic, and genetically engineered mouse models in part through NETs.

View Article and Find Full Text PDF

Macrophages infected with Gram-negative bacteria expressing Type III secretion system (T3SS) activate the NLRC4 inflammasome, resulting in Gasdermin D (GSDMD)-dependent, but GSDME independent IL-1β secretion and pyroptosis. Here we examine inflammasome signaling in neutrophils infected with Pseudomonas aeruginosa strain PAO1 that expresses the T3SS effectors ExoS and ExoT. IL-1β secretion by neutrophils requires the T3SS needle and translocon proteins and GSDMD.

View Article and Find Full Text PDF

Pyroptosis is a proinflammatory mode of lytic cell death mediated by accumulation of plasma membrane (PM) macropores composed of gasdermin-family (GSDM) proteins. It facilitates two major functions in innate immunity: (i) elimination of intracellular replicative niches for pathogenic bacteria; and (ii) non-classical secretion of IL-1 family cytokines that amplify host-beneficial inflammatory responses to microbial infection or tissue damage. Physiological roles for gasdermin D (GSDMD) in pyroptosis and IL-1β release during inflammasome signaling have been extensively characterized in macrophages.

View Article and Find Full Text PDF

When activated, gasdermin family members are thought to be pore-forming proteins that cause lytic cell death. Despite this, numerous studies have suggested that the threshold for lytic cell death is dependent on which gasdermin family member is activated. Determination of the propensity of various gasdermin family members to cause pyroptosis has been handicapped by the fact that for many of them, the mechanisms and timing of their activation are uncertain.

View Article and Find Full Text PDF

Pyroptosis is a mechanism of programmed, necrotic cell death mediated by gasdermins, a family of pore-forming proteins. Caspase-1 activates gasdermin D (GSDMD) under inflammatory conditions, whereas caspase-3 activates GSDME under apoptotic conditions, such as those induced by chemotherapy. These pathways are thought to be separate.

View Article and Find Full Text PDF

The C-type lectin receptor Mincle is known for its important role in innate immune cells in recognizing pathogen and damage associated molecular patterns. Here we report a T cell-intrinsic role for Mincle in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Genomic deletion of Mincle in T cells impairs TH17, but not TH1 cell-mediated EAE, in alignment with significantly higher expression of Mincle in TH17 cells than in TH1 cells.

View Article and Find Full Text PDF

Wear particles from orthopedic implants cause aseptic loosening, the leading cause of implant revisions. The particles are phagocytosed by macrophages leading to activation of the nod-like receptor protein 3 (NLRP3) inflammasome and release of interleukin-1β (IL-1β) which then contributes to osteoclast differentiation and implant loosening. The mechanism of inflammasome activation by orthopedic particles is undetermined but other particles cause the cytosolic accumulation of the lysosomal cathepsin-family proteases which can activate the NLRP3 inflammasome.

View Article and Find Full Text PDF

Gasdermin D (GSDMD) induces pyroptosis via the pore-forming activity of its N-terminal domain, cleaved by activated caspases associated with the release of IL-1β. Here, we report a nonpyroptotic role of full-length GSDMD in guiding the release of IL-1β-containing small extracellular vesicles (sEVs) from intestinal epithelial cells (IECs). In response to caspase-8 inflammasome activation, GSDMD, chaperoned by Cdc37/Hsp90, recruits the E3 ligase, NEDD4, to catalyze polyubiquitination of pro-IL-1β, serving as a signal for cargo loading into secretory vesicles.

View Article and Find Full Text PDF

Recent studies have implicated a role for adenosine-dependent immunosuppression in head and neck tumor microenvironments. We describe expression of CD73, an enzyme critical to the generation of adenosine from extracellular AMP, in T cells and other cell types within human head and neck tumors. Flow cytometric analyses of tumor-infiltrating cells indicate that CD3 cells are the predominant source of CD73 among immune infiltrating cells and that CD73 expression, especially among CD8 T cells, is inversely related to indices of T cell infiltration and T cell activation in the microenvironment of head and neck tumors.

View Article and Find Full Text PDF

Gasdermin-D (GSDMD) in inflammasome-activated macrophages is cleaved by caspase-1 to generate N-GSDMD fragments. N-GSDMD then oligomerizes in the plasma membrane (PM) to form pores that increase membrane permeability, leading to pyroptosis and IL-1β release. In contrast, we report that although N-GSDMD is required for IL-1β secretion in NLRP3-activated human and murine neutrophils, N-GSDMD does not localize to the PM or increase PM permeability or pyroptosis.

View Article and Find Full Text PDF

The efficacy of cancer chemotherapy is enhanced by induction of sustainable anti-tumor immune responses. Such responses involve accumulation of immunogenic mediators, such as extracellular ATP and ATP metabolites, within the tumor microenvironment. Recent studies have identified nucleotide-permeable plasma membrane channels or pores that are activated as early downstream consequences of different regulated cell death pathways: pannexin-1 channels in apoptosis, MLKL pores in necroptosis, and gasdermin-family pores in pyroptosis.

View Article and Find Full Text PDF

Discussion on LPS disruption of mitochondrial localization and autocrine purinergic signaling in neutrophil chemotaxis for control of E. coli infection.

View Article and Find Full Text PDF

Little is known about whether pathogen invasion of neural tissue is affected by immune-based mechanisms in endothelial cells. We examined the effects of endothelial cell CD40 on invasion of the retina and brain, organs seeded hematogenously. circulates in the bloodstream within infected leukocytes (including monocytes and dendritic cells) and as extracellular tachyzoites.

View Article and Find Full Text PDF

Background: Orthopaedic wear particles activate the NLRP3 inflammasome to produce active interleukin 1β (IL1β). However, the NLRP3 inflammasome must be primed before it can be activated, and it is unknown whether wear particles induce priming. Toll-like receptors (TLRs) are thought to mediate particle bioactivity.

View Article and Find Full Text PDF

NLRP3 inflammasome plays a critical spatiotemporal role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). This study reports a mechanistic insight into noncanonical NLRP3 inflammasome activation in microglia for the effector stage of EAE. Microglia-specific deficiency of ASC (apoptosis-associated speck-like protein containing a C-terminal caspase-activation and recruitment [CARD] domain) attenuated T cell expansion and neutrophil recruitment during EAE pathogenesis.

View Article and Find Full Text PDF

Dysregulation of inflammatory cell death is a key driver of many inflammatory diseases. Pyroptosis, a highly inflammatory form of cell death, uses intracellularly generated pores to disrupt electrolyte homeostasis and execute cell death. Gasdermin D, the pore-forming effector protein of pyroptosis, coordinates membrane lysis and the release of highly inflammatory molecules, such as interleukin-1β, which potentiate the overactivation of the innate immune response.

View Article and Find Full Text PDF

The inflammasomes are signaling platforms that promote the activation of inflammatory caspases such as caspases-1, -4, -5, and -11. Recent studies identified gasdermin D (GSDMD) as an effector for pyroptosis downstream of the inflammasome signaling pathways. Cleavage of GSDMD by inflammatory caspases allows its N-terminal domain to associate with membrane lipids and form pores that induce pyroptotic cell death.

View Article and Find Full Text PDF

Pyroptosis is an inflammatory form of programmed cell death that plays important roles in immune protection against infections and in inflammatory disorders. Gasdermin D (GSDMD) is an executor of pyroptosis upon cleavage by caspases-1/4/5/11 following canonical and noncanonical inflammasome activation. GSDMD N-terminal domain assembles membrane pores to induce cytolysis, whereas its C-terminal domain inhibits cell death through intramolecular association with the N domain.

View Article and Find Full Text PDF

Coagulation factor XII (FXII) deficiency is associated with decreased neutrophil migration, but the mechanisms remain uncharacterized. Here, we examine how FXII contributes to the inflammatory response. In 2 models of sterile inflammation, FXII-deficient mice (F12-/-) had fewer neutrophils recruited than WT mice.

View Article and Find Full Text PDF

Pyroptosis is a form of cell death important in defenses against pathogens that can also result in a potent and sometimes pathological inflammatory response. During pyroptosis, GSDMD (gasdermin D), the pore-forming effector protein, is cleaved, forms oligomers, and inserts into the membranes of the cell, resulting in rapid cell death. However, the potent cell death induction caused by GSDMD has complicated our ability to understand the biology of this protein.

View Article and Find Full Text PDF

Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins.

View Article and Find Full Text PDF

The X-linked inhibitor of apoptosis (XIAP) protein has been identified as a key genetic driver of two distinct inflammatory disorders, X-linked lymphoproliferative syndrome 2 (XLP-2) and very-early-onset inflammatory bowel disease (VEO-IBD). Molecularly, the role of XIAP mutations in the pathogenesis of these disorders is unclear. Recent work has consistently shown XIAP to be critical for signaling downstream of the Crohn's disease susceptibility protein nucleotide-binding oligomerization domain-containing 2 (NOD2); however, the reported effects of XLP-2 and VEO-IBD XIAP mutations on cell death have been inconsistent.

View Article and Find Full Text PDF