Publications by authors named "Dubrovska G"

Perivascular adipose tissue (PVAT) exerts anti-contractile effects on visceral arteries by release of various perivascular relaxing factors (PVRFs) and opening voltage-gated K (K) channels in vascular smooth muscle cells (VSMCs). Palmitic acid methyl ester (PAME) has been proposed as transferable PVRF in rat aorta. Here, we studied PVAT regulation of arterial tone of human mesenteric arteries and clarified the contribution of K channels and PAME in the effects.

View Article and Find Full Text PDF

Hydrogen sulfide is the "third" gasotransmitter on the rise in cardiovascular research. Recent studies show that hydrogen sulfide has a great potential in the regulation of vascular tone of systemic arteries and many molecular targets are discussed. However, the complex mechanism of vascular tone regulation by hydrogen sulfide is only incompletely understood.

View Article and Find Full Text PDF

Background: Hydrogen sulfide (H(2)S) is a potent vasodilator. However, the complex mechanisms of vasoregulation by H(2)S are not fully understood. We tested the hypotheses that (1) H(2)S exerts vasodilatory effects by opening KCNQ-type voltage-dependent (K(v)) K(+) channels and (2) that H(2)S-producing cystathionine-γ-lyase (CSE) in perivascular adipose tissue plays a major role in this pathway.

View Article and Find Full Text PDF

Background And Purpose: TRPC1 channels are expressed in the vasculature and are putative candidates for intracellular Ca(2+) handling. However, little is known about their role in endothelium-dependent vasodilatations including endothelium-derived hyperpolarizing factor (EDHF) vasodilatations, which require activation of Ca(2+) -activated K(+) channels (K(Ca)). To provide molecular information on the role of TRPC1 for K(Ca) function and the EDHF signalling complex, we examined endothelium-dependent and independent vasodilatations, K(Ca) currents and smooth muscle contractility in TRPC1-deficient mice (TRPC1-/-).

View Article and Find Full Text PDF

Background: Perivascular adipose tissue secretes an adipocyte-derived relaxing factor (ADRF) that opens voltage-dependent K (Kv) channels in peripheral arteries. We studied the role of KCNQ-type Kv channels and tested the hypothesis that hydrogen sulfide (H2S) could be an ADRF.

Methods: We performed isometric contraction studies on systemic arteries of rats and mice.

View Article and Find Full Text PDF

The aim of this study was to determine whether alterations in periadventitial adipose tissue and its anti-contractile effect precede hypertension development. We used 4-week-old male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR), which were pre-hypertensive. Vascular function was studied in the perfused mesenteric bed (MB, 1.

View Article and Find Full Text PDF

Mineralocorticoid receptor blockade protects from angiotensin II-induced target-organ damage. 11beta-Hydroxysteroid dehydrogenase type 2 protects the mineralocorticoid receptor from activation by glucocorticoids; however, high glucocorticoid concentrations and absent 11beta-hydroxysteroid dehydrogenase type 2 in some tissues make glucocorticoids highly relevant mineralocorticoid receptor ligands. We investigated the effects of corticosterone (10(-6) to 10(-12) mol/L) on early vascular mineralocorticoid receptor signaling by Western blotting, confocal microscopy, and myography.

View Article and Find Full Text PDF

Among the classical transient receptor potential (TRPC) subfamily, TRPC1 is described as a mechanosensitive and store-operated channel proposed to be activated by hypoosmotic cell swelling and positive pipette pressure as well as regulated by the filling status of intracellular Ca(2+) stores. However, evidence for a physiological role of TRPC1 may most compellingly be obtained by the analysis of a TRPC1-deficient mouse model. Therefore, we have developed and analyzed TRPC1(-/-) mice.

View Article and Find Full Text PDF

Objectives: Perivascular adipose tissue secretes an adipocyte-derived relaxing factor(s) (ADRF) that opens K(v) channels in rat arteries. Visceral fat accumulation causes adipocyte dysfunction, including hyposecretion of adiponectin. We tested the hypothesis that ADRF might be adiponectin and that adiponectin plays a role in the paracrine control of vascular tone by perivascular adipose tissue.

View Article and Find Full Text PDF

Objective: Perivascular adipose tissue of normotensive rats releases a transferable factor that induces relaxation by opening voltage-dependent K+ (Kv) channels. The relevance of these observations to hypertension is unknown.

Methods And Results: We characterized mesenteric perivascular adipose tissue from 3-month-old Wistar Kyoto rats (WKY) and aged-matched spontaneously hypertensive rats (SHR).

View Article and Find Full Text PDF

Among the TRPC subfamily of TRP (classical transient receptor potential) channels, TRPC3, -6, and -7 are gated by signal transduction pathways that activate C-type phospholipases as well as by direct exposure to diacylglycerols. Since TRPC6 is highly expressed in pulmonary and vascular smooth muscle cells, it represents a likely molecular candidate for receptor-operated cation entry. To define the physiological role of TRPC6, we have developed a TRPC6-deficient mouse model.

View Article and Find Full Text PDF

Recent studies propose a paracrine role for periadventitial adipose tissue in the regulation of vascular tone. This regulation depends on the anatomical integrity of the periadventitial adipose tissue and involves adipocyte-derived relaxing factor (ADRF). Although the nature of ADRF is largely unknown, it is released by periadventitial adipocytes and induces vasorelaxation by opening K+ channels in the plasma membrane of smooth muscle cells.

View Article and Find Full Text PDF

Periadventitial adipose tissue produces vasoactive substances that influence vascular contraction. Earlier studies addressed this issue in aorta, a vessel that does not contribute to peripheral vascular resistance. We tested the hypothesis that periadventitial adipose tissue modulates contraction of smaller arteries more relevant to blood pressure regulation.

View Article and Find Full Text PDF

Blood vessels are surrounded by variable amounts of adipose tissue. We showed earlier that adventitial adipose tissue inhibits rat aortic contraction by release of a transferable factor, adventitium-derived relaxing factor (ADRF), which activates smooth muscle K(+) channels. However, little is known about the mechanisms of ADRF release.

View Article and Find Full Text PDF

Virtually all blood vessels are surrounded by adventitial fat. Adipocytes produce a host of vasoactive substances that may influence vascular contraction. We tested whether or not perivascular adipose tissue modulates contraction of aortic ring preparations.

View Article and Find Full Text PDF

An indirect ELISA method has been used to study formation of autoantibodies (AA) to myocardial myofibrillar proteins in patients with different clinical IHD forms. Purified myosin (MS), actin (AC) and tropomyosin (TM) of the intact human myocardium acted as antigens. The highest level of AA to MS and AC was found in patients with AMI (acute myocardial infarct): it exceeded twice that of the norm and 1.

View Article and Find Full Text PDF