Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown.
View Article and Find Full Text PDFis a prevalent parasite of medical and veterinary importance. Tachyzoïtes and bradyzoïtes are responsible for acute and chronic toxoplasmosis (AT and CT), respectively. In immunocompetent hosts, AT evolves into a persistent CT, which can reactivate in immunocompromised patients with dire consequences.
View Article and Find Full Text PDFApicomplexa are unicellular eukaryotes and obligate intracellular parasites, including Plasmodium (the causative agent of malaria) and Toxoplasma (one of the most widespread zoonotic pathogens). Rhoptries, one of their specialized secretory organelles, undergo regulated exocytosis during invasion. Rhoptry proteins are injected directly into the host cell to support invasion and subversion of host immune function.
View Article and Find Full Text PDFApicomplexa are obligate intracellular parasites which cause various animal and human diseases including malaria, toxoplasmosis, and cryptosporidiosis. They proliferate by a unique mechanism that combines physically separated semi-closed mitosis of the nucleus and assembly of daughter cells by internal budding. Mitosis occurs in the presence of a nuclear envelope and with little appreciable chromatin condensation.
View Article and Find Full Text PDFZinc finger proteins (ZFPs) are one of the most abundant groups of proteins with a wide range of molecular functions. We have characterised a Toxoplasma protein that we named TgZFP2, as it bears a zinc finger domain conserved in eukaryotes. However, this protein has little homology outside this region and contains no other conserved domain that could hint for a particular function.
View Article and Find Full Text PDF-linked β-N-acetylglucosaminylation or -GlcNAcylation is a widespread post-translational modification that belongs to the large and heterogeneous group of glycosylations. The functions managed by -GlcNAcylation are diverse and include regulation of transcription, replication, protein's fate, trafficking, and signaling. More and more evidences tend to show that deregulations in the homeostasis of -GlcNAcylation are involved in the etiology of metabolic diseases, cancers and neuropathologies.
View Article and Find Full Text PDFThe phylum Apicomplexa encompasses deadly pathogens such as malaria and Cryptosporidium. Apicomplexa cell division is mechanistically divergent from that of their mammalian host, potentially representing an attractive source of drug targets. Depending on the species, apicomplexan parasites can modulate the output of cell division, producing two to thousands of daughter cells at once.
View Article and Find Full Text PDFProtozoan parasites have developed elaborate motility systems that facilitate infection and dissemination. For example, amoebae use actin-rich membrane extensions called pseudopodia, whereas Kinetoplastida are propelled by microtubule-containing flagella. By contrast, the motile and invasive stages of the Apicomplexa - a phylum that contains the important human pathogens Plasmodium falciparum (which causes malaria) and Toxoplasma gondii (which causes toxoplasmosis) - have a unique machinery called the glideosome, which is composed of an actomyosin system that underlies the plasma membrane.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
February 2017
Toxoplasma gondii is the causative agent of toxoplasmosis. The pathogenicity of this unicellular parasite is tightly linked to its ability to efficiently proliferate within its host. Tachyzoites, the fast dividing form of the parasite, divide by endodyogeny.
View Article and Find Full Text PDFThe phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, including the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes.
View Article and Find Full Text PDFApicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6.
View Article and Find Full Text PDFPlasmodium sporozoites are deposited in the host skin by Anopheles mosquitoes. The parasites migrate from the dermis to the liver, where they invade hepatocytes through a moving junction (MJ) to form a replicative parasitophorous vacuole (PV). Malaria sporozoites need to traverse cells during progression through host tissues, a process requiring parasite perforin-like protein 1 (PLP1).
View Article and Find Full Text PDFPhosphoinositides regulate numerous cellular processes by recruiting cytosolic effector proteins and acting as membrane signalling entities. The cellular metabolism and localization of phosphoinositides are tightly regulated by distinct lipid kinases and phosphatases. Here, we identify and characterize a unique phosphatidylinositol 3 kinase (PI3K) in Toxoplasma gondii, a protozoan parasite belonging to the phylum Apicomplexa.
View Article and Find Full Text PDFZebrafish embryos and larvae are now well-established models in which to study infectious diseases. Infections with non-pathogenic Gram-negative Escherichia coli induce a strong and reproducible inflammatory response. Here, we study the cellular response of zebrafish larvae when E.
View Article and Find Full Text PDFMycobacterium abscessus is a rapidly growing Mycobacterium causing a wide spectrum of clinical syndromes. It now is recognized as a pulmonary pathogen to which cystic fibrosis patients have a particular susceptibility. The M.
View Article and Find Full Text PDFA piperidinyl-benzimidazolone scaffold has been found in the structure of different inhibitors of membrane glycerolipid metabolism, acting on enzymes manipulating diacylglycerol and phosphatidic acid. Screening a focus library of piperidinyl-benzimidazolone analogs might therefore identify compounds acting against infectious parasites. We first evaluated the in vitro effects of (S)-2-(dibenzylamino)-3-phenylpropyl 4-(1,2-dihydro-2-oxobenzo[d]imidazol-3-yl)piperidine-1-carboxylate (compound 1) on Toxoplasma gondii and Plasmodium falciparum.
View Article and Find Full Text PDFGlycosylphosphatidylinositols (GPIs) from several protozoan parasites are thought to elicit a detrimental stimulation of the host innate immune system aside their main function to anchor surface proteins. Here we analyzed the GPI biosynthesis of an avirulent Toxoplasma gondii type 2 strain (PTG) by metabolic radioactive labeling. We determined the biological function of individual GPI species in the PTG strain in comparison with previously characterized GPI-anchors of a virulent strain (RH).
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
March 2014
Recent studies have shown a strong link between Toxoplasma gondii infection and psychiatric disorders, especially schizophrenia and bipolar disorders (odd ratio ≈2.7 for each disorder). Antipsychotic drugs and mood stabilizers may have anti-toxoplasmic activity that potentially may be associated with better effectiveness in these disorders, but previous results have been few in number and conflicting.
View Article and Find Full Text PDFIn the process of autophagy, the Atg8 protein is conjugated, through a ubiquitin-like system, to the lipid phosphatidylethanolamine (PE) to associate with the membrane of forming autophagosomes. There, it plays a crucial role in the genesis of these organelles and in autophagy in general. In most eukaryotes, the cysteine peptidase Atg4 processes the C terminus of cytosolic Atg8 to regulate its association with autophagosomal membranes and also delipidates Atg8 to release this protein from membranes.
View Article and Find Full Text PDFToxoplasma gondii is an apicomplexan intracellular protozoan parasite responsible for toxoplasmosis, a disease with considerable medical and economic impact worldwide. Toxoplasma gondii cells never lose the nuclear envelope and their chromosomes do not condense. Here, we tested the murine monoclonal antibody PL2-6, which labels epichromatin (a conformational chromatin epitope based on histones H2A and H2B complexed with DNA), in T.
View Article and Find Full Text PDFThe pathogenicity of the most deadly human malaria parasite, Plasmodium falciparum, relies on the export of virulence factors to the surface of infected erythrocytes. A novel membrane compartment, referred to as Maurer's clefts, is transposed to the host erythrocyte, acting as a marshal platform in the red blood cell cytoplasm, for exported parasite proteins addressed to the host cell plasma membrane. We report here the characterization of three new P.
View Article and Find Full Text PDF