Interstitial fluid (ISF) flow is identified as an essential physiological process that plays an important role in the development and progression of brain tumours. However, the relationship between the permeability of the tumour tissue, a complex porous medium, and the interstitial fluid flow around the tumour cells at the microscale is not well understood. To shed light on this issue, and in the absence of experimental techniques that can provide direct measurements, we develop a computational model to predict the tissue permeability of brain tumours in different grades by analysing the ISF flow at the pore scale.
View Article and Find Full Text PDFWe imaged the pore-scale distribution of air and water within packed columns of glass spheres of different textures using x-ray microcomputed tomography after primary drainage and after secondary imbibition. Postimbibition residual air saturation increases with roughness size. Clusters larger than a critical size of about 15 to 40 pores are distributed according to a power law, with exponents ranging from τ=2.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2014
Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics.
View Article and Find Full Text PDF