Publications by authors named "Dubouzet E"

(S)-Norcoclaurine is the entry compound in benzylisoquinoline alkaloid biosynthesis and is produced by the condensation of dopamine and 4-hydroxyphenylacetaldehyde (4-HPAA) by norcoclaurine synthase (NCS) (EC 4.2.1.

View Article and Find Full Text PDF

Selected cultured Coptis japonica cells produce a large amount of the benzylisoquinoline alkaloid berberine. Previous studies have suggested that berberine productivity is controlled at the transcript level of biosynthetic genes. We have identified a regulator of transcription in berberine biosynthesis using functional genomics with a transient RNA interference (RNAi) and overexpression of the candidate gene.

View Article and Find Full Text PDF

Chalcone synthase (CHS), the key enzyme in the flavonoid biosynthesis pathway, is encoded by a multigene family, CHS1-CHS8 and dCHS1 in soybean. A tandem repeat of CHS1, CHS3 and CHS4, and dCHS1 that is believed to be located in the vicinity comprises the I locus that suppresses coloration of the seed coat. This study was conducted to determine the location of all CHS members by using PCR-based DNA markers.

View Article and Find Full Text PDF

The transcription factors DREBs/CBFs specifically interact with the dehydration-responsive element/C-repeat (DRE/CRT) cis-acting element (core motif: G/ACCGAC) and control the expression of many stress-inducible genes in Arabidopsis. In rice, we isolated five cDNAs for DREB homologs: OsDREB1A, OsDREB1B, OsDREB1C, OsDREB1D, and OsDREB2A. Expression of OsDREB1A and OsDREB1B was induced by cold, whereas expression of OsDREB2A was induced by dehydration and high-salt stresses.

View Article and Find Full Text PDF

To identify all of the O-methyltransferase genes involved in isoquinoline alkaloid biosynthesis in Coptis japonica cells, we sequenced 1014 cDNA clones isolated from high-alkaloid-producing cultured cells of C. japonica. Among them, we found all three reported O-methyltransferases and an O-methyltransferase-like cDNA clone (CJEST64).

View Article and Find Full Text PDF