Publications by authors named "Dubinnyĭ M"

We recently identified the deazaflavin cofactor as a light emitter in novel bioluminescence (BL) system from Siberian earthworms Henlea sp. (Petushkov et al., 2023, Org.

View Article and Find Full Text PDF

Bioluminescence of insects is a well-known natural phenomenon in the focus of interest of scientific research. While the mechanisms of bioluminescence in Coleoptera have been extensively studied, there is a lack of information about the chemistry of light emission in Diptera species. Here we report the Keroplatus spp.

View Article and Find Full Text PDF

We report the first total synthesis of racemic luciferin, a thieno[3,2-]thiochromene tricarboxylate comprising a 6-6-5-fused tricyclic skeleton with three sulfur atoms in different electronic states. The key transformation is based on tandem condensation of bifunctional thiol-phosphonate, obtained from dimethyl acetylene dicarboxylate, with benzothiophene-6,7-quinone. The presented convergent approach provides the synthesis of the target compound with a previously unreported fused heterocyclic core in 11 steps, thus allowing for unambiguous confirmation of the chemical structure of luciferin by 2D-NMR spectroscopy.

View Article and Find Full Text PDF

Two forms were found in the NMR spectra of N-substituted 2-chloroadenosines. The proportion of the mini-form was 11-32% of the main form. It was characterized by a separate set of signals in COSY, N-HMBC and other NMR spectra.

View Article and Find Full Text PDF

Biochemistry of bioluminescence of the marine parchment tubeworm has been in research focus for over a century; however, the results obtained by various groups contradict each other. Here, we report the isolation and structural elucidation of three compounds from algae, which demonstrate bioluminescence activity with luciferase in the presence of Fe ions. These compounds are derivatives of polyunsaturated fatty acid peroxides.

View Article and Find Full Text PDF

The bioluminescence of Siberian earthworms sp. was found to be enhanced by two low molecular weight activators, termed ActH and ActS, found in the hot extracts. The fluorescence emission maximum of the activators matches the bioluminescence spectrum that peaks at 464 nm.

View Article and Find Full Text PDF

New quaternized chitosan derivatives HT-TMC were synthesized as a result of copper catalyzed azide-alkyne [3 + 2] cycloaddition (CuAAC). The structure of the HT-TMC was verified by 2D NMR. The synthesis was carried out as a result of the formation of Cu(I) in situ, under the action of ultrasound in aerobic conditions in the presence of acetic acid and metallic copper (copper turnings).

View Article and Find Full Text PDF

Cobra cytotoxins (CTs), the three-fingered proteins, feature high amino acid sequence homology in the beta-strands and variations in the loop regions. We selected a pair of cytotoxins from Naja kaouthia crude venom to clarify the sequence-structure relationships. Using chromatography and mass spectroscopy, we separated and identified the mixture of cytotoxins 2 and 3, differentiated by the only Val 41/Ala 41 substitution.

View Article and Find Full Text PDF

Chemokine receptors form a major sub-family of G protein-coupled receptors (GPCRs) and they are involved in a number of cellular and physiological processes related to our immune response and regulation. A better structural understanding of ligand-binding, activation, signaling and regulation of chemokine receptors is very important to design potentially therapeutic interventions for human disorders arising from aberrant chemokine signaling. One of the key limitations in probing the structural details of chemokine receptors is the availability of large amounts of purified, homogenous and fully functional chemokine ligands, and the commercially available products, are not affordable for in-depth structural studies.

View Article and Find Full Text PDF

Marine polychaetes , commonly known as fireworms, emit bright blue-green bioluminescence. Until the recent identification of the luciferase enzyme, little progress had been made toward characterizing the key components of this bioluminescence system. Here we present the biomolecular mechanisms of enzymatic (leading to light emission) and nonenzymatic (dark) oxidation pathways of newly described luciferin.

View Article and Find Full Text PDF

Assignment of backbone resonances is a necessary initial step in every protein NMR investigation. Standard assignment procedure is based on the set of 3D triple-resonance (H-C-N) spectra and requires at least several days of experimental measurements. This limits its application to the proteins with low stability.

View Article and Find Full Text PDF

Side chains possess a broader conformational space (compared to the backbone) and are directly affected by intra- and intermolecular interactions, hence their dynamics and the corresponding NMR relaxation data are more sensitive and informative. Nevertheless, transverse relaxation in [Formula: see text] ([Formula: see text] or [Formula: see text]) spin systems is predominantly non-measurable in uniformly [Formula: see text]-labeled proteins due to cross-correlation effects. In the present publication, we propose a number of pulse sequences for accurate and precise measurement of the dipole-dipole transverse cross-correlated relaxation rate [Formula: see text], which, similarly to [Formula: see text] measurements, provides information about the amplitudes of intramolecular dynamics.

View Article and Find Full Text PDF

A series of linear peptides with the general formula H-Glu(R1)-Glu(R2)-OH was subjected to cyclization under standard conditions. Formation of respective 2,5-diketopiperazines was accompanied by transformation of the N-terminal Glu(R1) to pyroglutamic acid residue. Even in the case R1 is an amino acid residue attached to the N-terminal γ-carboxyl group, lactamization leads to its elimination.

View Article and Find Full Text PDF

Background And Purpose: Acid-sensing ion channels (ASICs) play an important role in synaptic plasticity and learning, as well as in nociception and mechanosensation. ASICs are involved in pain and in neurological and psychiatric diseases, but their therapeutic potential is limited by the lack of ligands activating them at physiological pH.

Experimental Approach: We extracted, purified and determined the structure of a bisbenzylisoquinoline alkaloid, lindoldhamine, (LIN) from laurel leaves.

View Article and Find Full Text PDF

Cobra cytotoxins (CTs) belong to the three-fingered protein family. They are classified into S- and P-types, the latter exhibiting higher membrane-perturbing capacity. In this work, we investigated the interaction of CTs with phospholipid bilayers, using coarse-grained (CG) and full-atom (FA) molecular dynamics (MD).

View Article and Find Full Text PDF

Today, recombinant proteins are quite widely used in biomedical and biotechnological applications. At the same time, the question about their full equivalence to the native analogues remains unanswered. To gain additional insight into this problem, intimate atomistic details of a relatively simple protein, small and structurally rigid recombinant cardiotoxin I (CTI) from cobra Naja oxiana venom, were characterized using nuclear magnetic resonance (NMR) spectroscopy and atomistic molecular dynamics (MD) simulations in water.

View Article and Find Full Text PDF

A novel luciferin from a bioluminescent Siberian earthworm Fridericia heliota was recently described. In this study, the Fridericia oxyluciferin was isolated and its structure elucidated. The results provide insight into a novel bioluminescence mechanism in nature.

View Article and Find Full Text PDF

We report isolation and structure elucidation of AsLn5, AsLn7, AsLn11 and AsLn12: novel luciferin analogs from the bioluminescent earthworm Fridericia heliota. They were found to be highly unusual modified peptides, comprising either of the two tyrosine-derived chromophores, CompX or CompY and a set of amino acids, including threonine, gamma-aminobutyric acid, homoarginine, and unsymmetrical N,N-dimethylarginine. These natural compounds represent a unique peptide chemistry found in terrestrial animals and rise novel questions concerning their biosynthetic origin.

View Article and Find Full Text PDF

The structure elucidation and synthesis of the luciferin from the recently discovered luminous earthworm Fridericia heliota is reported. This luciferin is a key component of a novel ATP-dependent bioluminescence system. UV, fluorescence, NMR, and HRMS spectroscopy studies were performed on 0.

View Article and Find Full Text PDF
Article Synopsis
  • * Sevanol fully blocks the transient current of ASIC3 and partially inhibits the sustained current, showing a selectivity that leaves other ASIC channels mostly unaffected, with ASIC1a being much less sensitive to sevanol.
  • * Chemical analysis confirmed sevanol's structure as a lignan composed of epiphyllic acid and two isocitryl esters, and its administration reduced thermal pain sensitivity in test subjects, suggesting potential analgesic and anti-inflammatory effects linked to thyme.
View Article and Find Full Text PDF

The structure and dynamics of the isolated voltage-sensing domain (VSD) of the archaeal potassium channel KvAP was studied by high-resolution NMR. The almost complete backbone resonance assignment and partial side-chain assignment of the (2)H,(13)C,(15)N-labeled VSD were obtained for the protein domain solubilized in DPC/LDAO (2:1) mixed micelles. Secondary and tertiary structures of the VSD were characterized using secondary chemical shifts and NOE contacts.

View Article and Find Full Text PDF

Carbon fluxes through main pathways of glucose utilization in Escherichia coli cells--glycolysis, pentose phosphate pathway (PPP), and Enther-Doudoroff pathway (EDP)--were studied. Their ratios were analyzed in E. coli strains MG1655, MG1655(edd-eda), MG1655(zwf, edd-eda), and MG1655(pgi, edd-eda).

View Article and Find Full Text PDF
Article Synopsis
  • 31P-NMR spectroscopy is essential for analyzing phospholipid liposomes, but the magnetic field can alter their shape, impacting the spectra.
  • A new analytical formula has been proposed to accurately model the 31P-NMR spectra of these ellipsoidal liposomes, utilizing a Lorentzian broadening function.
  • The P-FIT program, developed in Mathematica, allows for practical analysis and simulation of various complex 31P-NMR spectra of prolate liposomes.
View Article and Find Full Text PDF

The CTs (cytotoxins) I and II are positively charged three-finger folded proteins from venom of Naja oxiana (the Central Asian cobra). They belong to S- and P-type respectively based on Ser-28 and Pro-30 residues within a putative phospholipid bilayer binding site. Previously, we investigated the interaction of CTII with multilamellar liposomes of dipalmitoylphosphatidylglycerol by wide-line (31)P-NMR spectroscopy.

View Article and Find Full Text PDF