J Neuropathol Exp Neurol
March 2006
In this study, we examined the metabolic activity of nucleus basalis of Meynert (NBM) neurons in individuals clinically diagnosed with no cognitive impairment (NCI, n = 8), mild cognitive impairment (MCI, n = 9), and subjects with moderate Alzheimer disease (AD, n = 7). We used Golgi apparatus (GA) size as a measure of neuronal metabolic activity. Subjects with MCI showed increased NBM metabolic activity; they had significantly more neurons with larger GA size as compared with NCI and AD subjects.
View Article and Find Full Text PDFWe previously found apolipoprotein (apoE) epsilon4-dependent lower metabolic activity in nucleus basalis of Meynert (NBM) neurons in Alzheimer disease (AD). In the present study we examined the metabolic activity in the NBM of 39 mentally intact control subjects with different APOE genotype. The control subjects had either no AD pathology (Braak stage 0) or the very beginning of AD pathology (Braak stage I-II).
View Article and Find Full Text PDFAlzheimer Dis Assoc Disord
November 2003
Based on several lines of evidence, it has been hypothesized that decreased neuronal metabolic rate may precede cognitive impairment, contributing to neuronal atrophy as well as reduced neuronal function in Alzheimer disease (AD). Additionally, studies have shown that stimulation of neurons through different mechanisms may protect those cells from the deleterious effects of aging and AD, a phenomenon we paraphrased as "use it or lose it." Therefore, it is attractive to direct the development of therapeutic strategies toward stimulation of metabolic rate/neuronal activity to improve cognition and other symptoms in AD.
View Article and Find Full Text PDFAging may be viewed as a progressive loss of normal biological function. Due to complex genetic and environmental interactions, the sequence of functional impairment shows a high degree of individual variability. In humans life style and health care have an additional influence on the aging process.
View Article and Find Full Text PDF(1) Alzheimer's disease is a multifactorial disease in which age and APOE-epsilon 4 are important risk factors. (2) The neuropathological hallmarks of AD, i.e.
View Article and Find Full Text PDFAnimal models used to study human aging and neurodegeneration do not display all symptoms of these processes as they are found in humans. Recently, we have shown that many cells in neocortical slices from adult human postmortem brain may survive for extensive periods in vitro. Such cultures may enable us to study age and disease related processes directly in human brain tissue.
View Article and Find Full Text PDFNeurobiol Aging
November 2000
In the mollusc Lymnaea stagnalis, neuroendocrine caudodorsal cells (CDCs) were studied physiologically and morphologically from egg layers (EL) (aged 154-400), and animals 4 weeks (CEL-4) (342-455 days), and 8 weeks (CEL-8) (477-660 days) after production of their last egg mass. After recording chemical transmission, electrical coupling and stimulation induced afterdischarges (ADs), CDCs then were filled with Lucifer Yellow. Based on the axonal branching revealed by Lucifer Yellow, CDCs were classified as extensively, moderately, or minimally branched.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 1998
As reported before, the metabolic activity of nucleus basalis neurons is reduced significantly in Alzheimer patients. Because the apolipoprotein E (ApoE) epsilon4 genotype is a major risk factor for Alzheimer's disease (AD), we determined whether the decrease in metabolic activity in nucleus basalis neurons in AD is ApoE-type dependent. The size of the Golgi apparatus (GA) was determined as a measure of neuronal metabolic activity in 30 controls and 41 AD patients with a known ApoE genotype by using an image analysis system in the nucleus basalis of Meynert.
View Article and Find Full Text PDF