Background And Purpose: Magnetic resonance imaging - linear accelerator (MRI-linac) systems permit imaging of tumours to guide treatment. Dynamic contrast enhanced (DCE)-MRI allows investigation of tumour perfusion. We assessed the feasibility of performing DCE-MRI on a 1.
View Article and Find Full Text PDFObjectives: To measure dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) biomarker repeatability in patients with non-small cell lung cancer (NSCLC). To use these statistics to identify which individual target lesions show early biological response.
Materials And Methods: A single-centre, prospective DCE-MRI study was performed between September 2015 and April 2017.
Radiation therapy (RT) is a core pillar of oncologic treatment, and half of all patients with cancer receive this therapy as a curative or palliative treatment. The recent integration of MRI into the RT workflow has led to the advent of MRI-guided RT (MRIgRT). Using MRI rather than CT has clear advantages for guiding RT to pelvic tumors, including superior soft-tissue contrast, improved organ motion visualization, and the potential to image tumor phenotypic characteristics to identify the most aggressive or treatment-resistant areas, which can be targeted with a more focal higher radiation dose.
View Article and Find Full Text PDFBackground And Purpose: Tumour hypoxia is prognostic in head and neck cancer (HNC), associated with poor loco-regional control, poor survival and treatment resistance. The advent of hybrid MRI - radiotherapy linear accelerator or 'MR Linac' systems - could permit imaging for treatment adaptation based on hypoxic status. We sought to develop oxygen-enhanced MRI (OE-MRI) in HNC and translate the technique onto an MR Linac system.
View Article and Find Full Text PDFIntroduction: Radiotherapy is the most common curative treatment for non-metastatic prostate cancer; however, up to 13% of patients will develop local recurrence within 10 years. Patients can undergo further and potentially curative treatment including salvage surgery, brachytherapy (BT), external beam radiotherapy, high-intensity focused ultrasound and cryotherapy. Systematic review shows that high-dose-rate (HDR) BT and stereotactic body radiotherapy (SBRT) have the best outcomes in terms of biochemical control and lowest side effects.
View Article and Find Full Text PDFBackground/purpose: This work evaluated the suitability of MR derived sequences for use in online adaptive RT workflows on a 1.5 Tesla (T) MR-Linear Accelerator (MR Linac).
Materials/methods: Non-patient volunteers were recruited to an ethics approved MR Linac imaging study.
Objectives: Accurate image registration is vital in cervical cancer where changes in both planning target volume (PTV) and organs at risk (OARs) can make decisions regarding image registration complicated. This work aims to determine the impact of a dedicated educational tool compared with experience gained in MR-guided radiotherapy (MRgRT).
Methods: 10 therapeutic radiographers acted as observers and were split into two groups based on previous experience with MRgRT and Monaco treatment planning system.
Purpose: Gadolinium-based contrast agents (GBCAs) may add value to magnetic resonance (MR)-only radiotherapy (RT) workflows including on hybrid machines such as the MR Linac. The impact of GBCAs on RT dose distributions however have not been well studied. This work used retrospective GBCA-enhanced datasets to assess the dosimetric effect of GBCAs on head and neck plans.
View Article and Find Full Text PDFCurative-intent radiotherapy plays an integral role in the treatment of lung cancer and therefore improving its therapeutic index is vital. MR guided radiotherapy (MRgRT) systems are the latest technological advance which may help with achieving this aim. The majority of MRgRT treatments delivered to date have been stereotactic body radiation therapy (SBRT) based and include the treatment of (ultra-) central tumors.
View Article and Find Full Text PDFPurpose: This study compared MRI to CBCT for the identification and registration of lymph nodes (LN) in patients with locally advanced (LA)-NSCLC, to assess the suitability of targeting LNs in future MR-image guided radiotherapy (MRgRT) workflows.
Method: Radiotherapy radiographers carried out Visual Grading Analysis (VGA) assessment of image quality, LN registration and graded their confidence in registration for each of the 24 LNs on CBCT and two MR sequences, MR1 (T2w Turbo Spin Echo) and MR2 (T1w DIXON water only image).
Results: Pre-registration image quality assessment revealed MR1 and MR2 as significantly superior to CBCT in terms of image quality (p ≤ 0.
. Despite growing interest in magnetic resonance imaging (MRI), integration in external beam radiotherapy (EBRT) treatment planning uptake varies globally. In order to understand the current international landscape of MRI in EBRT a survey has been performed in 11 countries.
View Article and Find Full Text PDFThis document gives guidance for multidisciplinary teams within institutions setting up and using an MRI-guided radiotherapy (RT) treatment planning service. It has been written by a multidisciplinary working group from the Institute of Physics and Engineering in Medicine (IPEM). Guidance has come from the experience of the institutions represented in the IPEM working group, in consultation with other institutions, and where appropriate references are given for any relevant legislation, other guidance documentation and information in the literature.
View Article and Find Full Text PDFPurpose: Due to the electron return effect (ERE) during magnetic resonance imaging guided radiotherapy (MRIgRT), rectal gas during pelvic treatments can result in hot spots of over-dosage in the rectal wall. Determining the clinical impact of this effect on rectal toxicity requires estimation of the amount and mobility (and stability) of rectal gas during treatment. We therefore investigated the amount of rectal gas and local inter- and intra-fractional changes of rectal gas in pelvic cancer patients.
View Article and Find Full Text PDFIntroduction: Magnetic resonance imaging (MRI) offers superior soft tissue contrast to computed tomography (CT), the current standard imaging modality for planning radiotherapy treatment. Improved soft tissue contrast could reduce uncertainties in identifying tumour and surrounding healthy tissues, potentially leading to improved outcomes in patients with lung cancer. This study explored patient experience of MR treatment planning scans in addition to a CT scan.
View Article and Find Full Text PDFThe benefits of integrating MRI into the radiotherapy pathway are well published, however there is little consensus in guidance on how to commission or implement its use. With a view to developing consensus guidelines for the use of MRI in external beam radiotherapy (EBRT) treatment planning in the UK, a survey was undertaken by an Institute of Physics and Engineering in Medicine (IPEM) working-party to assess the current landscape of MRI use in EBRT in the UK. A multi-disciplinary working-party developed a survey to understand current practice using MRI for EBRT treatment planning; investigate how MRI is currently used and managed; and identify knowledge gaps.
View Article and Find Full Text PDFBackground: Magnetic Resonance linear accelerator (MR-linac) systems represent a new type of technology that allows for online MR-guidance for high precision radiotherapy (RT). Currently, the first MR-linac installations are being introduced clinically. Since the imaging performance of these integrated MR-linac systems is critical for their application, a thorough commissioning of the MRI performance is essential.
View Article and Find Full Text PDFClin Oncol (R Coll Radiol)
November 2018
Magnetic resonance imaging (MRI) is a highly versatile imaging modality that can be used to measure features of the tumour microenvironment including cell death, proliferation, metabolism, angiogenesis, and hypoxia. Mapping and quantifying these pathophysiological features has the potential to alter the use of adaptive radiotherapy planning. Although these methods are available for use on diagnostic machines, several challenges exist for implementing these functional MRI methods on the MRI-linear accelerators (linacs).
View Article and Find Full Text PDFClin Oncol (R Coll Radiol)
November 2018
The reference standard treatment for cervical cancer is concurrent chemoradiotherapy followed by magnetic resonance imaging (MRI)-guided brachytherapy. Improvements in brachytherapy have increased local control rates, but late toxicity remains high with rates of 11% grade ≥3. The primary clinical target volume (CTV) for external-beam radiotherapy includes the cervix and uterus, which can show significant inter-fraction motion.
View Article and Find Full Text PDFTransl Lung Cancer Res
December 2017
Radiotherapy remains the cornerstone of curative treatment for inoperable locally advanced lung cancer, given concomitantly with platinum-based chemotherapy. With poor overall survival, research efforts continue to explore whether integration of advanced radiation techniques will assist safe treatment intensification with the potential for improving outcomes. One advance is the integration of magnetic resonance imaging (MRI) in the treatment pathway, providing anatomical and functional information with excellent soft tissue contrast without exposure of the patient to radiation.
View Article and Find Full Text PDFPenetration depth of ultraviolet, visible light and infrared radiation in biological tissue has not previously been adequately measured. Risk assessment of typical intense pulsed light and laser intensities, spectral characteristics and the subsequent chemical, physiological and psychological effects of such outputs on vital organs as consequence of inappropriate output use are examined. This technical note focuses on wavelength, illumination geometry and skin tone and their effect on the energy density (fluence) distribution within tissue.
View Article and Find Full Text PDF