The rapid development of deep learning has brought novel methodologies for 3D object detection using LiDAR sensing technology. These improvements in precision and inference speed performances lead to notable high performance and real-time inference, which is especially important for self-driving purposes. However, the developments carried by these approaches overwhelm the research process in this area since new methods, technologies and software versions lead to different project necessities, specifications and requirements.
View Article and Find Full Text PDFDue to a point cloud's sparse nature, a sparse convolution block design is necessary to deal with its particularities. Mechanisms adopted in computer vision have recently explored the advantages of data processing in more energy-efficient hardware, such as the FPGA, as a response to the need to run these algorithms on resource-constrained edge devices. However, implementing it in hardware has not been properly explored, resulting in a small number of studies aimed at analyzing the potential of sparse convolutions and their efficiency on resource-constrained hardware platforms.
View Article and Find Full Text PDFIn recent years there has been an increase in the number of research and developments in deep learning solutions for object detection applied to driverless vehicles. This application benefited from the growing trend felt in innovative perception solutions, such as LiDAR sensors. Currently, this is the preferred device to accomplish those tasks in autonomous vehicles.
View Article and Find Full Text PDFRecently released research about deep learning applications related to perception for autonomous driving focuses heavily on the usage of LiDAR point cloud data as input for the neural networks, highlighting the importance of LiDAR technology in the field of Autonomous Driving (AD). In this sense, a great percentage of the vehicle platforms used to create the datasets released for the development of these neural networks, as well as some AD commercial solutions available on the market, heavily invest in an array of sensors, including a large number of sensors as well as several sensor modalities. However, these costs create a barrier to entry for low-cost solutions for the performance of critical perception tasks such as Object Detection and SLAM.
View Article and Find Full Text PDFResearch about deep learning applied in object detection tasks in LiDAR data has been massively widespread in recent years, achieving notable developments, namely in improving precision and inference speed performances. These improvements have been facilitated by powerful GPU servers, taking advantage of their capacity to train the networks in reasonable periods and their parallel architecture that allows for high performance and real-time inference. However, these features are limited in autonomous driving due to space, power capacity, and inference time constraints, and onboard devices are not as powerful as their counterparts used for training.
View Article and Find Full Text PDFIndoor Positioning Systems (IPSs) for emergency responders is a challenging field attracting researchers worldwide. When compared with traditional indoor positioning solutions, the IPSs for emergency responders stand out as they have to operate in harsh and unstructured environments. From the various technologies available for the localization process, ultra-wide band (UWB) is a promising technology for such systems due to its robust signaling in harsh environments, through-wall propagation and high-resolution ranging.
View Article and Find Full Text PDFNefrologia
April 2018
Background: Despite well-documented risks, injectable supplements containing high doses of vitamins are commonly used.
Objectives: To describe acute kidney injury (AKI) as a complication of vitamin intoxication.
Methods: Our series consisted of 16 patients with kidney complications resulting from the use of veterinary intramuscular injection supplements of vitamin A, D and E.