Mol Neurobiol
November 2017
Epigenetic modifications including histone modifications are associated with seizure development and epileptogenesis; however, its underlying mechanism remains to be elucidated. Dipeptidyl peptidase 4 (DPP4) and IL6 are identified as febrile seizure (FS)-related genes using gene microarray analysis in hyperthermia prone (HP) rats. This purpose of the study focused on exploring whether epigenetic modifications marker histone H3 lysine 27 trimethylation (H3K27me3)-regulated DPP4 and IL6 expression further affected seizures development.
View Article and Find Full Text PDFObjective: Febrile seizures (FS) are the most common neurological disease in infancy and early childhood, it can lead to metabolic changes and have long-term health implications. Aim of this study was to investigate the long-term effects of FS on metabolism.
Methods: We measured certain metabolic parameters in hyperthermia-prone (HP) rats, which were developed using a selective breeding process and showed a lower seizure threshold than wild-type (WT) rats.
Febrile seizures (FS) are the most common type of convulsive events in infants and young children, but the precise underlying genetic mechanism remains to be explored. To investigate the underlying pathogenic factors in FS and subsequent epilepsy, alterations in gene expression between the two new strains of rats (hyperthermia-prone [HP] vs hyperthermia-resistant [HR]), were investigated by using the Whole Rat Genome Oligo Microarray. This process identified 1,140 differentially expressed genes (DEGs; 602 upregulated and 538 downregulated), which were analyzed to determine significant Gene Ontology (GO) categories, signaling pathways and gene networks.
View Article and Find Full Text PDF