Publications by authors named "Duangta Kitkaew"

Magnetic powdered activated carbon (Mag-PAC) is an effective adsorbent to remove hexavalent chromium (Cr(VI)) from water and can be recovered for reuse. However, the tradeoff between the adsorption performance of Cr(VI) and magnetic properties of Mag-PAC remains unclear. Herein, we prepared a series of Mag-PAC adsorbents containing various iron-oxide mass fractions with FeSO·7HO as the precursor, using a facile wet-chemical precipitation route and conducted batch experiments to evaluate the Cr(VI) adsorption performance.

View Article and Find Full Text PDF

Powdered activated carbon blocks (PACBs) are waste products obtained from household drinking water purification systems. In this study, we demonstrate that they can be used as adsorbents for the cost-effective and environmentally benign removal of hexavalent chromium (Cr(VI)) from contaminated-water and rinse electroplating wastewater. To evaluate Cr(VI) sorption onto the PACB, studies on equilibrium, kinetics, and thermodynamics were performed using batch mode experiments.

View Article and Find Full Text PDF

Magnetic powdered activated carbon (Mag-PAC) was successfully developed and applied as an adsorbent for dissolved organic matter (DOM) removal from the effluent of a membrane bioreactor (MBR) using batch experiments. The results show that a coating of iron oxide particles is consistently distributed on the surface of powdered activated carbon (PAC), resulting in a decrease in the specific surface area and in the pH at the point of zero charge, even though the particle sizes of Mag-PAC and PAC were similar. A Mag-PAC dosage of 4 g/L exhibited efficient and fast DOM adsorption with a relatively short contact time of 5 min.

View Article and Find Full Text PDF