We have developed RNA-based quencher-free molecular aptamer beacons (RNA-based QF-MABs) for the detection of ATP, taking advantage of the conformational changes associated with ATP binding to the ATP-binding RNA aptamer. The RNA aptamer, with its well-defined structure, was readily converted to the fluorescence sensors by incorporating a fluorophore into the loop region of the hairpin structure. These RNA-based QF-MABs exhibited fluorescence signals in the presence of ATP relative to their low background signals in the absence of ATP.
View Article and Find Full Text PDFA combination of fluorophore and nucleobase through a π-conjugated rigid linker integrates the base pairing and the fluorescence change into a single event. Such base discriminating fluorophore can change its fluorescence as a direct response to the base pairing event and therefore have advantages over tethered labels or base surrogates lacking the hydrogen-bonding ability. 8-(Pyrene-1-yl)ethynyl-adenine (A) has been extensively used as fluorescence labels in DNA and LNA, but it showed little discrimination between different nucleobases.
View Article and Find Full Text PDF