Publications by authors named "Duane T Johnson"

This study develops and solves two-dimensional convective-conductive coupled partial differential equations based on Pennes' bio-heat transfer model using low Curie temperature nanoparticles (LCTNPs) to illustrate thermal behavior quantitatively within tumor-normal composite tissue by establishing a multi-region finite difference algorithm. The model combines NEel relaxation and temperature-variant saturation magnetization derived from Brillouin Equation and Curie-Weiss Law. The numerical results indicate that different deposition patterns of LCTNP and boundary conditions directly effect the steady state temperature distribution.

View Article and Find Full Text PDF

Viruses are well known for their ability to cause disease, but their beneficial usefulness as vectors for gene therapy have been noted as well. As an extension of their use in a gene therapy context, their combination with nanotechnology is starting to benefit many areas of science and medicine. These include nanofabrication and medical diagnostics, to name a few, as well as viro-nanotherapy, here defined as the combination of viral biology with nanotechnology to create new therapeutic avenues to treat disease.

View Article and Find Full Text PDF

Tailoring the surface of nanoparticles is essential for biological applications of magnetic nanoparticles. FePt nanoparticles are interesting candidates owing to their high magnetic moment. Established procedures to make FePt nanoparticles use oleic acid and oleylamine as the surfactants, which make them dispersed in nonpolar solvents such as hexane.

View Article and Find Full Text PDF

Hyperthermia can be produced by near-infrared laser irradiation of gold nanoparticles present in tumors and thus induce tumor cell killing via a bystander effect. To be clinically relevant, however, several problems still need to be resolved. In particular, selective delivery and physical targeting of gold nanoparticles to tumor cells are necessary to improve therapeutic selectivity.

View Article and Find Full Text PDF

In this paper, the adsorption energy of an acicular (prolate and cylindrical) particle onto a liquid-fluid interface and the effect of the line tension are investigated. The results show that, without line tension, acicular particles always prefer to lie flat in the plane of the interface. However, line tension plays a significant role in determining the adsorption of an acicular particle.

View Article and Find Full Text PDF