One of the earliest events in the signal transduction cascade that initiates a DNA damage checkpoint is the phosphorylation on serine 139 of histone H2AX (gammaH2AX) at DNA double-strand breaks (DSBs). However, the role of gammaH2AX in DNA repair is poorly understood. To address this question, we generated chicken DT40 cells carrying a serine to alanine mutation at position 139 of H2AX (H2AX(-/S139A)) and examined their DNA repair capacity.
View Article and Find Full Text PDFWhen a double-strand break (DSB) forms in DNA, many molecules of histone H2AX present in the chromatin flanking the break site are rapidly phosphorylated. The phosphorylated derivative of H2AX is named gamma-H2AX, and the phosphorylation site is a conserved serine four residues from the C-terminus, 139 in mammals and 129 in budding yeast. An antibody to gamma-H2AX reveals that the molecules form a gamma-focus at the DSB site.
View Article and Find Full Text PDFCollision between a topoisomerase I-DNA intermediate and an advancing replication fork represents a unique form of replicative damage. We have shown previously that yeast H2A serine 129 is involved in the recovery from this type of damage. We now report that efficient repair also requires proteins involved in chromatid cohesion: Csm3; Tof1; Mrc1, and Dcc1.
View Article and Find Full Text PDFHistone H2AX becomes phosphorylated in chromatin domains flanking sites of DNA double-strand breakage associated with gamma-irradiation, meiotic recombination, DNA replication, and antigen receptor rearrangements. Here, we show that loss of a single H2AX allele compromises genomic integrity and enhances the susceptibility to cancer in the absence of p53. In comparison with heterozygotes, tumors arise earlier in the H2AX homozygous null background, and H2AX(-/-) p53(-/-) lymphomas harbor an increased frequency of clonal nonreciprocal translocations and amplifications.
View Article and Find Full Text PDFPhosphorylated H2AX (gamma-H2AX) is essential to the efficient recognition and (or) repair of DNA double strand breaks (DSBs), and many molecules, often thousands, of H2AX become rapidly phosphorylated at the site of each nascent DSB. An antibody to gamma-H2AX reveals that this highly amplified process generates nuclear foci. The phosphorylation site is a serine four residues from the C-terminus which has been evolutionarily conserved in organisms from giardia intestinalis to humans.
View Article and Find Full Text PDFCells maintain genomic stability by the coordination of DNA-damage repair and cell-cycle checkpoint control. In replicating cells, DNA damage usually activates intra-S-phase checkpoint controls, which are characterized by delayed S-phase progression and increased Rad53 phosphorylation. We show that in budding yeast, the intra-S-phase checkpoint controls, although functional, are not activated by the topoisomerase I inhibitor camptothecin (CPT).
View Article and Find Full Text PDFHistone H2AX is rapidly phosphorylated in the chromatin micro-environment surrounding a DNA double-strand break (DSB). Although H2AX deficiency is not detrimental to life, H2AX is required for the accumulation of numerous essential proteins into irradiation induced foci (IRIF). However, the relationship between IRIF formation, H2AX phosphorylation (gamma-H2AX) and the detection of DNA damage is unclear.
View Article and Find Full Text PDFDNA double-strand breaks originating from diverse causes in eukaryotic cells are accompanied by the formation of phosphorylated H2AX (gammaH2AX) foci. Here we show that gammaH2AX formation is also a cellular response to topoisomerase I cleavage complexes known to induce DNA double-strand breaks during replication. In HCT116 human carcinoma cells exposed to the topoisomerase I inhibitor camptothecin, the resulting gammaH2AX formation can be prevented with the phosphatidylinositol 3-OH kinase-related kinase inhibitor wortmannin; however, in contrast to ionizing radiation, only camptothecin-induced gammaH2AX formation can be prevented with the DNA replication inhibitor aphidicolin and enhanced with the checkpoint abrogator 7-hydroxystaurosporine.
View Article and Find Full Text PDFHigher order chromatin structure presents a barrier to the recognition and repair of DNA damage. Double-strand breaks (DSBs) induce histone H2AX phosphorylation, which is associated with the recruitment of repair factors to damaged DNA. To help clarify the physiological role of H2AX, we targeted H2AX in mice.
View Article and Find Full Text PDFClass switch recombination (CSR) is a region-specific DNA recombination reaction that replaces one immunoglobulin heavy-chain constant region (Ch) gene with another. This enables a single variable (V) region gene to be used in conjunction with different downstream Ch genes, each having a unique biological activity. The molecular mechanisms that mediate CSR have not been defined, but activation-induced cytidine deaminase (AID), a putative RNA-editing enzyme, is required for this reaction.
View Article and Find Full Text PDF