Emergency medical service (EMS) providers have a higher potential exposure to infectious agents than the general public (Nguyen et al., 2020, "Risk of COVID-19 Among Frontline Healthcare Workers and the General Community: A Prospective Cohort Study," Lancet Pub. Health, (9), pp.
View Article and Find Full Text PDFThis study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively.
View Article and Find Full Text PDFInfect Control Hosp Epidemiol
December 2022
Extrusion of high-melt-temperature polymers on large-format additive manufacturing (LFAM) machines releases particles and gases, though there is no data describing their physical and chemical characteristics. Emissions from two LFAM machines were monitored during extrusion of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) polymers as well as high-melt-temperature Ultem (poly(ether imide)), polysulfone (PSU), poly(ether sulfone) (PESU), and polyphenylene sulfide (PPS) polymers. Filter samples of particles were collected for quantification of elements and bisphenol A and S (BPA, BPS) and visualization of morphology.
View Article and Find Full Text PDFThe literature on emissions during material extrusion additive manufacturing with 3-D printers is expanding; however, there is a paucity of data for large-format additive manufacturing (LFAM) machines that can extrude high-melt-temperature polymers. Emissions from two LFAM machines were monitored during extrusion of six polymers: acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high-melt-temperature polysulfone (PSU), poly(ether sulfone) (PESU), polyphenylene sulfide (PPS), and Ultem (poly(ether imide)). Particle number, total volatile organic compound (TVOC), carbon monoxide (CO), and carbon dioxide (CO) concentrations were monitored in real-time.
View Article and Find Full Text PDFBackground: Fused filament fabrication 3-D printing with acrylonitrile butadiene styrene (ABS) filament emits ultrafine particulates (UFPs) and volatile organic compounds (VOCs). However, the toxicological implications of the emissions generated during 3-D printing have not been fully elucidated.
Aim And Methods: The goal of this study was to investigate the toxicity of ABS-emissions from a commercial desktop 3-D printer.
During extrusion of some polymers, fused filament fabrication (FFF) 3-D printers emit billions of particles per minute and numerous organic compounds. The scope of this study was to evaluate FFF 3-D printer emission-induced toxicity in human small airway epithelial cells (SAEC). Emissions were generated from a commercially available 3-D printer inside a chamber, while operating for 1.
View Article and Find Full Text PDFAsphalt pavement milling machines use a rotating cutter drum to remove the deteriorated road surface for recycling. The removal of the road surface has the potential to release respirable crystalline silica, to which workers can be exposed. This article describes an evaluation of respirable crystalline silica exposures to the operator and ground worker from two different half-lane and larger asphalt pavement milling machines that had ventilation dust controls and water-sprays designed and installed by the manufacturers.
View Article and Find Full Text PDFExposures to diacetyl, a primary ingredient of butter flavoring, have been shown to cause respiratory disease among workers who mix flavorings. This study focused on evaluating ventilation controls designed to reduce emissions from the flavor mixing tanks, the major source of diacetyl in the plants. Five exhaust hood configurations were evaluated in the laboratory: standard hinged lid-opened, standard hinged lid-closed, hinged lid-slotted, dome with 38-mm gap, and dome with 114-mm gap.
View Article and Find Full Text PDFInvestigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard.
View Article and Find Full Text PDFNational Institute for Occupational Safety and Health (NIOSH) researchers evaluated two exhaust stack designs for reducing carbon monoxide (CO) exposures from gasoline-powered generator exhaust on houseboats. Tests were conducted (a) after dark, (b) in high-temperature and high-humidity environments, (c) during temperature inversions, (d) under various generator loads, and (e) at different houseboat trim angles. Two different designs of houseboat exhaust stacks were evaluated and compared with the side-exhaust configuration, which is standard on many houseboats.
View Article and Find Full Text PDF