Polymer-based magnetic particles have been widely used for the separation of biological samples including nucleic acids, proteins, virus, and cells. Existing magnetic particles are almost prepared by coating polymers on magnetic nanoparticles (NPs). However, this strategy usually encounters the problem of poor magnetic NPs loading capacity.
View Article and Find Full Text PDFCurrently, the massive use of fossil fuels, which still serve as the dominant global energy, has led to the release of large amounts of greenhouse gases. Providing abundant, clean, and safe renewable energy is one of the major technical challenges for humankind. Nowadays, hydrogen-based energy is widely considered a potentially ideal energy carrier that could provide clean energy in the fields of transportation, heat and power generation, and energy storage systems, almost without any impact on the environment after consumption.
View Article and Find Full Text PDFUnexpectedly, the 5-dehydroquinoline radical cation was formed in the gas phase from the 5-iodo-8-nitroquinolinium cation upon ion-trap collision-activated dissociation. This reaction involves the cleavage of a nitro group to generate an intermediate monoradical, namely, the 8-dehydro-5-iodoquinolinium cation, followed by rearrangement through abstraction of a hydrogen atom from the protonated nitrogen atom by the radical site. Dissociation of the rearranged radical cation through elimination of an iodine atom generates the 5-dehydroquinoline radical cation.
View Article and Find Full Text PDF