Publications by authors named "Duancheng Zhao"

Small molecule antioxidants can inhibit or retard oxidation reactions and protect against free radical damage to cells, thus playing a key role in food, cosmetics, pharmaceuticals, the environment, as well as materials. Experimentally driven antioxidant discovery is a major paradigm, and computationally assisted antioxidants are rarely reported. In this study, a functional-group-based alternating multitask self-supervised molecular representation learning method is proposed to simultaneously predict the antioxidant activities of small molecules for eight commonly used in vitro antioxidant assays.

View Article and Find Full Text PDF

Conventional machine learning (ML) and deep learning (DL) play a key role in the selectivity prediction of kinase inhibitors. A number of models based on available datasets can be used to predict the kinase profile of compounds, but there is still controversy about the advantages and disadvantages of ML and DL for such tasks. In this study, we constructed a comprehensive benchmark dataset of kinase inhibitors, involving in 141,086 unique compounds and 216,823 well-defined bioassay data points for 354 kinases.

View Article and Find Full Text PDF

Discovering new anticancer drugs has been widely concerned and remains an open challenge. Target- and phenotypic-based experimental screening represent two mainstream anticancer drug discovery methods, which suffer from time-consuming, labor-intensive, and high experimental costs. In this study, we collected 485,900 compounds involving in 3,919,974 bioactivity records against 426 anticancer targets and 346 cancer cell lines from academic literature, as well as 60 tumor cell lines from NCI-60 panel.

View Article and Find Full Text PDF

Cytochrome P450 (CYP) is a superfamily of heme-containing oxidizing enzymes involved in the metabolism of a wide range of medicines, xenobiotics, and endogenous compounds. Five of the CYPs (1A2, 2C9, 2C19, 2D6, and 3A4) are responsible for metabolizing the vast majority of approved drugs. Adverse drug-drug interactions, many of which are mediated by CYPs, are one of the important causes for the premature termination of drug development and drug withdrawal from the market.

View Article and Find Full Text PDF

Elucidating and accurately predicting the druggability and bioactivities of molecules plays a pivotal role in drug design and discovery and remains an open challenge. Recently, graph neural networks (GNNs) have made remarkable advancements in graph-based molecular property prediction. However, current graph-based deep learning methods neglect the hierarchical information of molecules and the relationships between feature channels.

View Article and Find Full Text PDF

PARP (poly ADP-ribose polymerase) family is a crucial DNA repair enzyme that responds to DNA damage, regulates apoptosis, and maintains genome stability; therefore, PARP inhibitors represent a promising therapeutic strategy for the treatment of various human diseases including COVID-19. In this study, a multi-task FP-GNN (Fingerprint and Graph Neural Networks) deep learning framework was proposed to predict the inhibitory activity of molecules against four PARP isoforms (PARP-1, PARP-2, PARP-5A, and PARP-5B). Compared with baseline predictive models based on four conventional machine learning methods such as RF, SVM, XGBoost, and LR as well as six deep learning algorithms such as DNN, Attentive FP, MPNN, GAT, GCN, and D-MPNN, the evaluation results indicate that the multi-task FP-GNN method achieves the best performance with the highest average BA, F1, and AUC values of 0.

View Article and Find Full Text PDF

Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines.

View Article and Find Full Text PDF

Breast cancer (BC) has surpassed lung cancer as the most frequently occurring cancer, and it is the leading cause of cancer-related death in women. Therefore, there is an urgent need to discover or design new drug candidates for BC treatment. In this study, we first collected a series of structurally diverse datasets consisting of 33,757 active and 21,152 inactive compounds for 13 breast cancer cell lines and one normal breast cell line commonly used in in vitro antiproliferative assays.

View Article and Find Full Text PDF