Publications by authors named "Duancheng Guo"

Background: Triple-negative breast cancer (TNBC) is distinguished by a significant likelihood of distant recurrence and an unfavourable prognosis. However, the underlying molecules and mechanisms have not been fully elucidated.

Methods: We investigated the expression profile and clinical relevance of chaperonin-containing TCP1 subunit 6A (CCT6A) in TNBC.

View Article and Find Full Text PDF

Gemcitabine is a standard first-line drug for pancreatic cancer chemotherapy. Nevertheless, gemcitabine resistance is common and significantly limits its therapeutic efficacy, impeding advancements in pancreatic cancer treatment. In this study, through a comprehensive analysis of gemcitabine-resistant cell lines and patient samples, 39 gemcitabine resistance-associated risk genes were identified, and two distinct gemcitabine response-related phenotypes were delineated.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is the most prevalent type of stroke, and due to its high incidence, disability rate, and mortality rate, it imposes a significant burden on the health care system. Amino acids constitute one of the most crucial metabolic products within the human body, and alterations in their metabolic pathways have been identified in the microenvironment of AIS, thereby influencing the pathogenesis, severity, and prognosis of AIS. The amino acid metabolism characteristics in AIS are complex.

View Article and Find Full Text PDF

Breast cancer (BC) is the most common malignant tumor worldwide. Despite enormous progress made in the past decades, the underlying mechanisms of BC remain further illustrated. Recently, TRIM family proteins proved to be engaged in BC progression through regulating various aspects.

View Article and Find Full Text PDF

Thioredoxin-interacting protein (TXNIP) is a crucial thioredoxin-binding protein that is recognized as a tumor suppressor in diverse malignancies, such as breast cancer, lung cancer, hepatocellular carcinoma, and thyroid cancer. However, the specific role and molecular mechanisms of TXNIP in the pathogenesis and progression of pancreatic cancer cells have not been determined. In this study, we investigate the relationship between TXNIP expression and overall survival prognosis in pancreatic cancer patients.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant digestive tract tumor with limited clinical treatments. Transforming acidic coiled-coil-containing protein 3 (TACC3) is a component of the centrosome axis and a member of the TACC family, which affect mitosis and regulate chromosome stability and are involved in tumor development and progression. However, the role of TACC3 in PDAC remains elusive.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic landscape of cancer and have been widely approved for use in the treatment of diverse solid tumors. Targeted therapy has been an essential part of cancer treatment for decades, and in most cases, a special drug target is required. Numerous studies have confirmed the synergistic effect of combining ICIs with targeted therapy.

View Article and Find Full Text PDF

Background: Bilateral primary breast cancer (BPBC) is a rare type of breast cancer. Studies on the clinicopathologic and molecular characteristics of BPBC in a metastatic context are very limited.

Methods: A total of 574 unselected metastatic breast cancer patients with clinical information were enrolled in our next-generation sequencing (NGS) database.

View Article and Find Full Text PDF

Heterogeneity represents a pivotal factor in the therapeutic failure of triple-negative breast cancer (TNBC). In this study, we retrospectively collected and analysed clinical and pathological data from 258 patients diagnosed with TNBC at the Fudan University Cancer Hospital. Our findings show that low ARID1A expression is an independent prognostic indicator for poor overall survival (OS) and recurrence-free survival (RFS) in TNBC patients.

View Article and Find Full Text PDF

The pathogenesis of pancreatic cancer involves substantial metabolic reprogramming, resulting in abnormal proliferation of tumor cells. This tumorigenic reprogramming is often driven by genetic mutations, such as activating mutations of the oncogene and inactivating or deletions of the tumor suppressor genes , , and , which play a critical role in the initiation and development of pancreatic cancer. As a normal cell gradually develops into a cancer cell, a series of signature characteristics are acquired: activation of signaling pathways that sustain proliferation; an ability to resist growth inhibitory signals and evade apoptosis; and an ability to generate new blood vessels and invade and metastasize.

View Article and Find Full Text PDF

Background: Medulloblastoma (MB) is the most common malignant brain tumor in children. Approximately one-third of MB patients remain incurable. Understanding the molecular mechanism of MB tumorigenesis is, therefore, critical for developing specific and effective treatment strategies.

View Article and Find Full Text PDF

Astrocytes, a major glial cell type in the brain, play a critical role in supporting the progression of medulloblastoma (MB), the most common malignant pediatric brain tumor. Through lineage tracing analyses and single-cell RNA sequencing, we demonstrate that astrocytes are predominantly derived from the transdifferentiation of tumor cells in relapsed MB (but not in primary MB), although MB cells are generally believed to be neuronal-lineage committed. Such transdifferentiation of MB cells relies on Sox9, a transcription factor critical for gliogenesis.

View Article and Find Full Text PDF

This protocol provides the procedures for isolating differentiated tumor cells from medulloblastoma (MB) in mice. Procedures for transplantation into cerebella are also included to examine the tumorigenesis of differentiated MB cells. This protocol outlines the detailed steps required for (1) isolation of tumor cells from mouse MB, (2) purification of differentiated tumor cells by fluorescence-activated cell sorting, and (3) transplantation of tumor cells into cerebella.

View Article and Find Full Text PDF

Medulloblastoma (MB) often originate from cerebellar granule neuron precursors (GNPs). We recently found that medulloblastoma cells undergo differentiation as GNPs. Differentiated MB cells have permanently lost their proliferative capacity and tumorigenicity.

View Article and Find Full Text PDF

Tumor cells are characterized by unlimited proliferation and perturbed differentiation. Using single-cell RNA sequencing, we demonstrate that tumor cells in medulloblastoma (MB) retain their capacity to differentiate in a similar way as their normal originating cells, cerebellar granule neuron precursors. Once they differentiate, MB cells permanently lose their proliferative capacity and tumorigenic potential.

View Article and Find Full Text PDF