Publications by authors named "Duanchao Wang"

Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.

View Article and Find Full Text PDF

With the prosperity of the development of carbon nanorings, certain topologically or functionally unique units-embedded carbon nanorings have sprung up in the past decade. Herein, we report the facile and efficient synthesis of three cyclooctatetraene-embedded carbon nanorings (COTCNRs) that contain three (COTCNR1 and COTCNR2) and four (COTCNR3) COT units in a one-pot Yamamoto coupling. These nanorings feature hoop-shaped segments of Gyroid (G-), Diamond (D-), and Primitive (P-) type carbon schwarzites.

View Article and Find Full Text PDF

Cellulose-based conductive materials (CCMs) have emerged as a promising class of materials with various applications in energy and sensing. This review provides a comprehensive overview of the synthesis methods and properties of CCMs and their applications in batteries, supercapacitors, chemical sensors, biosensors, and mechanical sensors. Derived from renewable resources, cellulose serves as a scaffold for integrating conductive additives such as carbon nanotubes (CNTs), graphene, metal particles, metal-organic frameworks (MOFs), carbides and nitrides of transition metals (MXene), and conductive polymers.

View Article and Find Full Text PDF

Single-crystal-to-single-crystal (SCSC) polymerization offers an effective protocol for the environmentally friendly preparation of polymer single crystals (PSCs) with extremely high crystallinity and very large molecular weights. Single-crystal X-ray diffraction (SCXRD) serves as a powerful technique for the in-depth characterization of their structures at a molecular level. Hence, a fundamental understanding of the structure-property relationships of PSCs is within our reach.

View Article and Find Full Text PDF

Bending multi-walled carbon nanotubes (MWCNTs) into rings and structuring them into aerogels is difficult. In this study, cellulose nanofiber (CNF)-MWCNT composite fibers with chain-ring structures were prepared by covalently interconnecting carboxylated CNF and aminated MWCNT by dehydration condensation, solving the problems of the formation of MWCNT aerogels and their phase separation during the compounding process and providing CNF-based aerogels with electrical conductivity. The covalently interconnected aerogels (CAs) had hierarchical porous structures with mechanical resilience and chain-ring fibers, which drove the CNF and MWCNT to form a continuous homogeneous network resulting in a high compression resistance of 269.

View Article and Find Full Text PDF

Unlabelled: If a person comes into contact with pathogens on public facilities, there is a threat of contact (skin/wound) infections. More urgently, there are also reports about COVID-19 coronavirus contact infection, which once again reminds that contact infection is a very easily overlooked disease exposure route. Herein, we propose an innovative implantation strategy to fabricate a multi-walled carbon nanotube/polyvinyl alcohol (MWCNT/PVA, MCP) interpenetrating interface to achieve flexibility, anti-damage, and non-contact sensing electronic skin (E-skin).

View Article and Find Full Text PDF

Cellulose is the most abundant renewable natural polymer on earth, but it does not conduct electricity, which limits its application expansion. The existing methods of making cellulose conductive are combined with another conductive material or high-temperature/high-pressure carbonization of the cellulose itself, while in the traditional method of sulfuric acid hydrolysis to extract nanocellulose, it is usually believed that a too high temperature will destroy cellulose and lead to experimental failure. Now, based on a new research perspective, by controlling the continuous reaction process and isolating oxygen, we directly extracted intrinsically conductive cellulose nanofiber (CNF) from biomass, where the confined range molecular chains of CNF were converted to highly graphitized carbon at only 90 °C and atmospheric pressure, while large-scale twisted graphene films can be synthesized bottom-up from CNFene suspensions, called CNFene (cellulose nanofiber-graphene).

View Article and Find Full Text PDF

In this study, the cotton fabrics/cuprous oxide-nanocellulose (CuO-NC) flexible and recyclable composite material (COCO) with highly efficient photocatalytic degradation of dyes and antibacterial properties was fabricated. Using flexible cotton fabrics as substrates, CuO were in-situ synthesized to make CuO uniformly grew on cotton fibers and were wrapped with NC. The photocatalytic degradation ability of COCO-5 was verified by use methylene blue (MB), the degradation rate was as high as 98.

View Article and Find Full Text PDF

Spherical cellulose nanocrystals (SCNs) and rod-shaped cellulose nanocrystals (RCNs) were extracted from different cellulose materials. The two shape forms of cellulose nanocrystals (CNs) were designed with a combination of isothiocyanate (FITC), and both the obtained FITC-SCNs and FITC-RCNs exhibited high fluorescence brightness. The surfaces of SCNs and RCNs were subjected to a secondary imino group by a Schiff reaction and then covalently bonded to the isothiocyanate group of FITC through a secondary imino group to obtain fluorescent cellulose nanocrystals (FITC-CNs).

View Article and Find Full Text PDF

This work presents the first fabrication of smart nonwoven fabric (DSR-CZPP) with extraordinary reversible double-stimulus responsive wettability, where carboxyl groups of cellulose nanocrystals/zinc oxide (CNC/ZnO) nanohybrids deposited on fabric surface can bond with hydroxyl group of the PDMAEMA-b-PHEMA-b-PMAAAB triblock polymer brushes that was prepared by using methyl methacrylate (HEMA), dimethylaminoethyl methacrylate (DMAEMA) and methacrylamide-azobenzene monomer (MAAAB) via reversible addition-fragmentation chain transfer (RAFT). The peculiar reversible double-stimulus responsive wettability of the DSR-CZPP can be modulated by triggering hydrophilic/hydrophobic transitions and lipophilic/oleophobic transitions under dual-stimulations of pH and UV light irradiation. The special molecular structure of the triblock polymer brushes enabled DSR-CZPP to intelligent modulation of oil-water separation under the control of "UV & pH double switch", meanwhile CNC/ZnO simultaneously can induce the photocatalytic degradation of organic dyes.

View Article and Find Full Text PDF

Nature employs supramolecular self-assembly to organize many molecularly complex structures. Based on this, we now report for the first time the supramolecular self-assembly of 3D lightweight nanocellulose aerogels using carboxylated ginger cellulose nanofibers and polyaniline (PANI) in a green aqueous medium. A possible supramolecular self-assembly of the 3D conductive supramolecular aerogel (SA) was provided, which also possessed mechanical flexibility, shape recovery capabilities, and a porous networked microstructure to support the conductive PANI chains.

View Article and Find Full Text PDF

Charged nanocellulose (NC) with a high aspect ratio (larger than 100) extracted from animal or bacterial cellulose and chemical cross-linked NC aerogels have great promising applicability in material science, but facile fabrication of such NC aerogels from plant cellulose by physical cross-linking still remains a major challenge. In this work, carboxylated cellulose nanofiber (CNF) with the highest aspect ratio of 144 was extracted from wasted ginger fibers by a simple one-step acid hydrolysis. Our approach could easily make the carboxylated CNF assemble into robust bulk aerogels with tunable densities and desirable shapes on a large scale (3D macropores to mesopores) by hydrogen bonds.

View Article and Find Full Text PDF

Water hyacinth was used as substrate for bioethanol production in the present study. Combination of acid pretreatment and enzymatic hydrolysis was the most effective process for sugar production that resulted in the production of 402.93 mg reducing sugar at optimal condition.

View Article and Find Full Text PDF