Invasive Lobular Carcinoma (ILC) is a subtype of breast cancer characterized by distinct biological features, and limited glucose uptake coupled with increased reliance on amino acid and lipid metabolism. Our prior studies highlight the importance of glutamate as a key regulator of ILC tumor growth and therapeutic response. Here we examine the expression of four key proteins involved in glutamate transport and metabolism - SLC3A2, SLC7A11, GPX4, and GLUD1/2 - in a racially diverse cohort of 72 estrogen receptor-positive (ER+) ILC and 50 ER+ invasive ductal carcinoma, no special type (IDC/NST) patients with primary disease.
View Article and Find Full Text PDFBreast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/estrogen receptor-positive (HER2+/ER+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of patients with HER2+/ER+ receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized 2 in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities.
View Article and Find Full Text PDFBackground: Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/ estrogen receptor-positive (HER2+/HR+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of HER2+/ER+ patients receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized two distinct models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities.
View Article and Find Full Text PDF