Publications by authors named "Du Zhongyu"

Graphene oxide‑gold nanocomposites (GO-AuNCPs) are promising candidates in nanomedicine. They will inevitably bind with biomolecules such as serum albumin (SA) in the body while they enter the organism. The interaction between GO-AuNCPs and human serum albumin (HSA)/bovine serum albumin (BSA) were investigated by using multispectroscopic methods, elucidating the binding principles through molecular simulations.

View Article and Find Full Text PDF

In order to provide a guide for plant selection of ecological restoration at antimony (Sb) mining ecological damaged sites, species composition, importance value, niche, and interspecific associations of tree, shrub, and herb layers were examined at Sb mining site in Nandan City, Guangxi, China. The results showed that 23 vascular plant species were recorded at the Sb mining ecological damaged site, belonging to 22 genera and 13 families, primarily Gramineae, Cyperaceae, Fabaceae, and Asteraceae. The highest importance values for trees, shrubs, and herbs were observed in (56.

View Article and Find Full Text PDF

Understanding how plant functional traits respond to mining activities and impact metal(loid)s accumulation in dominant species is crucial for exploring the driving mechanisms behind plant community succession and predicting the ecological restoration potential of these plants. In this study, we investigated four dominant herbaceous species (, , , and ) growing on antimony (Sb) mining sites (MS) with high Sb and arsenic (As) levels, as well as non-mining sites (NMS). The aim was to analyze the variations in functional traits and their contribution to Sb and As concentrations in plants.

View Article and Find Full Text PDF

Nitrogen (N) in the atmosphere frequently affects plant growth, ecological stoichiometric equilibrium, and homeostasis stability. However, the effect of N addition application on the growth of Hippophae rhamnoides seedlings remains ambiguous. We investigated the effects of N addition on the ecological stoichiometry and homeostatic characteristics of H.

View Article and Find Full Text PDF

Water and nitrogen (N) often affect plant species diversity and interspecific relationship among plant populations in global terrestrial ecosystems. However, the effects of water and N addition on plant diversity and interspecific relationship remain poorly understood. In the study, we designed a three-year field experiment in a desert grassland to assess the effect of increased water (natural +50 %) and N addition (10 g·N·m·a) on plant diversity and interspecific relationship.

View Article and Find Full Text PDF

Three different shapes of gold nanoparticles were synthesized in this experiment. At the same time, studies compared their effects with human serum albumin (HSA). Gold nanoparticles (AuNPs) with three different morphologies, such as, nanospheres (AuNSs), nanorods (AuNRs), and nanoflowers (AuNFs) were synthesized via a seeding method and their characteristic absorption peaks were detected using ultraviolet-visible (UV-vis) absorption spectroscopy, Telectron microscopy (TEM), Dynamic Light Scattering (DLS) and Zeta potential measurements, circular dichroism (CD), and Fourier transform infrared spectroscopy (FTIR) to study the interactions between them and HSA.

View Article and Find Full Text PDF

Phytoremediation using trees combined with soil amendments has gained much attention for its highly cost-effective trait. In natural field conditions, however, the results may not reflect the true performance of amendments based on short-term laboratory studies. In this three-year field trial, various soil amendments such as rice straw biochar, palygorskite, a combined biochar of rice straw biochar and palygorskite, and hydroxyapatite were used to systematically study the potential of the low-accumulator (Quercus fabri Hance) and high-accumulator (Quercus texana Buckley) for cadmium (Cd) and zinc (Zn) to remediate severely contaminated soils.

View Article and Find Full Text PDF

For a long time, the development of the industry has been seriously restricted by root rot disease. In general, the occurrence of plant root rot is considered to be closely related to the composition and diversity of the soil microbial community. It is critical to understand the relationship between the occurrence of root rot in and the soil microbial composition.

View Article and Find Full Text PDF

The global increase in drought frequency and intensity in large areas has potentially important effects on soil seed banks (SSBs). However, a systematic evaluation of the impact of drought on SSBs at a global scale has not yet been well understood. We evaluated the effects of drought on SSBs and identified the association key drivers in the current meta-analysis.

View Article and Find Full Text PDF

Alkali ion (Li, Na, and K) batteries as a new generation of energy storage devices are widely applied in portable electronic devices and large-scale energy storage equipment. The recent focus has been devoted to develop universal anodes for these alkali ion batteries with superior performance. Transition metal sulfides can accommodate alkaline ions with large radius to travel freely between layers due to its large interlayer spacing.

View Article and Find Full Text PDF

is a member of the family Asteraceae. In this paper, we reported the complete chloroplast (cp) genome sequence of . The results showed that complete chloroplast genome comprises 151,325 bp, containing a largen single copy (LSC) region of 83,370 bp, a small single copy (SSC) region of 18,273 bp, and a pair of inverted repeats (IRs) region of 24,841 bp.

View Article and Find Full Text PDF

Background: Limited access to genetic information has greatly hindered our understanding of the molecular evolution, phylogeny, and differentiation time of subg. Amygdalus. This study reported complete chloroplast (cp) genome sequences of subg.

View Article and Find Full Text PDF

is a forerunner species of wind-break and sand-fixation in desert steppe in China, which plays an important role in ecosystem restoration and reconstruction. How-ever, it could influence human health. Based on 89 valid data of current distribution of in China and 19 typical climatic factors, the MaxEnt model was used to simulate the potential distribution of in China under current and two scenarios (RCP 4.

View Article and Find Full Text PDF

The binding reaction of reduced graphene oxide-silver nanocomposites (rGO-AgNCs) with calf thymus single-stranded DNA (ssDNA) was studied by ultraviolet-visible absorption, fluorescence spectroscopy and circular dichroism (CD), using berberine hemisulphate (BR) dye as a fluorescence probe. The absorbance of ssDNA increases, but the fluorescence intensity is quenched with the addition of rGO-AgNCs. The binding of rGO-AgNCs with ssDNA was able to increase the quenching effects of BR and ssDNA, and induce the changes in CD spectra.

View Article and Find Full Text PDF

is a member of the family Rosaceae. In this paper, we report complete chloroplast genome sequences of (Rosaceae). The results showed that complete chloroplast genome comprises 158,365 bp, containing a largen single copy (LSC) region of 86,240 bp, a small single copy (SSC) region of 19,012 bp, and a pair of inverted repeats (IRs) region of 26,386 bp.

View Article and Find Full Text PDF

Amygdalus nana is the research materials, and we used the Illumina HiSeq X Ten system to do sequencing, and used the complete chloroplast genomes of 12 species to constructed thephylogenetic tree. The results showed that the complete chloroplast genome of the was 158,596 bp in length, containing a largen single copy (LSC) region of 86,608 bp, a small single copy (SSC) region of 18,998 bp, and a pair of inverted repeats (IRs) region of 26,411 bp. The genome has a GC content of 36.

View Article and Find Full Text PDF

The interaction between graphene oxide-sliver nanocomposites (GO-AgNCPs) and bovine serum albumin (BSA) in aqueous buffer solution was investigated by using several spectroscopic and imaging techniques. The visible absorbance intensity of GO-AgNCPs increased with increasing concentrations of BSA, and a slight redshift of the surface plasmon resonance band (SPR) occurred due to the absorption of BSA on the surface of GO-AgNCPs. Fluorescence data revealed a static quenching process of BSA caused by GO-AgNCPs.

View Article and Find Full Text PDF

The interactions of triangular silver nanoprisms (TAgNPrs) with bovine serum albumin (BSA) were investigated using multiple spectroscopic techniques. A noticeable absorbance increase was noted in the peak ranges of 250 to 300 nm for BSA, and the intensity increased with the increasing concentration of TAgNPrs. Furthermore, a slight blue shift of the surface plasmon resonance band of TAgNPrs occurred, indicating that the protein absorbed on the TAgNPrs surface to form a bio-nano interface.

View Article and Find Full Text PDF

In this work, we studied the kinetics of the oxidation of iodide ion by persulfate ion in the critical water/bis(2-ethylhexyl) sodium sulfosuccinate (AOT)/n-decane microemulsions with the molar ratios of water to AOT being 35.0 and 40.8 via the microcalorimetry at various temperatures.

View Article and Find Full Text PDF

We have used three-wavelength UV-spectrophotometry to study the reaction of the alkaline fading of phenolphthalein in the critical solution of 2-butoxyethanol + water. It was found that when the temperature was far away from the critical point, the values of the natural logarithm of the rate constant k and the natural logarithm of the chemical equilibrium K determined in our experiments had good linear relationships with the reciprocal of temperature, which served as the backgrounds and were used for correcting k and K in the critical region. The critical slowing down of the reaction and the critical anomaly of the chemical equilibrium were detected near the critical point.

View Article and Find Full Text PDF

The kinetics of alkaline fading of crystal violet (CV) has been studied by UV spectrophotometry and microcalorimetry in the critical binary solution of 2-butoxyethanol + water at the initial reaction stage and various temperatures. It was found that the first-order rate constants obtained from these two methods are well accorded with each other, and the temperature dependence of the rate constant obeyed the Arrhenius equation in a temperature region far from the critical point. The critical slowing down was detected by both methods near the critical point.

View Article and Find Full Text PDF