Publications by authors named "Du Changwen"

Rapid detection of NO -N is critical to address the challenges of food security, environmental degradation, and climate change. Conventional methods for sensing NO -N in water demand pretreatments and chemical reagents, which are time- and cost-consuming. Consequently, Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy has been well applied for the determination of NO -N.

View Article and Find Full Text PDF

Lignin-based slow-release fertilizers (SRFs) have attracted widespread attention due to their ability to enhance nutrient utilization efficiency and reduce environmental pollution in agricultural production. However, the extraction and separation processes of lignin from biomass sources are intricate, involving substantial quantities of non-reusable toxic reagents. Here, a sustainable and eco-friendly approach using deep eutectic solvents (DES) was employed to treat rice straw, effectively dissolving the lignin present.

View Article and Find Full Text PDF

Nitrate is a prominent pollutant in water bodies around the world. The isotopes in nitrate provide an effective approach to trace the sources and transformations of nitrate in water bodies. However, determination of isotopic composition by conventional analytical techniques is time-consuming, laborious, and expensive, and alternative methods are urgently needed.

View Article and Find Full Text PDF

Quantitative prediction of nitrate contents in different industrial wastewater was carried out using Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy. The algorithm of Gaussian deconvolution was applied in the spectral range of 1500-1200 cm to eliminate the background interferences on target information of nitrate, and partial least squares regression () model and support vector machine () model were developed for the prediction of nitrate. The results showed that the model ( = 0.

View Article and Find Full Text PDF

Due to the controlled-delivery function of metal-organic frameworks (MOFs) for gases, drugs, and pesticides, iron-based MOFs (Fe-MOFs) were explored in the laboratory as a novel fertilizer, which showed potential for use in the fertilizer industry; the challenge in the industrial scale application of Fe-MOFs in practical crop production was mainly the impact of scaling-up to energy and heat transfer, as well as the reaction yield. In this study, Fe-MOFs were hydrothermally synthesized both in the laboratory scale and in the pilot scale, their structure and components were characterized using various spectroscopic techniques, and then their nutrient release and degradation behaviors were investigated. The results showed that Fe-MOFs were successfully synthesized in both scales with similar yields around 27%, and the Fe-MOFs showed a similar structure with the molecular formula of CHFeNOP.

View Article and Find Full Text PDF

Benefitting from the special structure of the leaf cuticle layer, plants have natural hydrophobicity and anti-fouling abilities. Inspired by the leaf surface structure, a biomimetic modification strategy was raised to improve the surface hydrophobicity of polyacrylate coating for controlled release fertilizer. Double-layer (polyacrylate and carnauba wax) coated fertilizer was obtained after biomimetic modification.

View Article and Find Full Text PDF

Urban river and lake systems show important ecological function, and eutrophication frequently occurs and results from human activities due to the limited self-regulating ability. Since nitrate (NO) is one of the key factors causing water eutrophication, its rapid qualification plays critical role in the eutrophication control and management. In this study, water samples were collected from typical water bodies from Nanjing in different seasons, and Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR) was employed for the quantitative determination of NO coupled with algorithms of deconvolution and partial least squares regression (PLSR).

View Article and Find Full Text PDF

Rapid quantification of soil organic matter (SOM) is a great challenge for the health assessment and fertility management of agricultural soil. Laser-induced breakdown spectroscopy (LIBS) with appropriate modeling algorithms is an alternative tool for this measurement. However, the current calibration strategy limits the prediction performance of the LIBS technique.

View Article and Find Full Text PDF

Controlled-release fertilizers (CRFs) with long release longevity have been actively sought to match the nutrient demands of crops over the entire growing period. Waterborne polymer is an environmental friendliness coating for CRFs because it neither uses organic solvent nor influences soil property. However, its low hydrophobicity leads to a short controlled-release longevity of CRFs coated with waterborne polymer.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) were usually synthesized in hydrothermal conditions; in this study, a more energy-saving, easier to control, and solvent-free mechanochemical method was firstly applied to synthesize MOFs with varied reactants as slow release fertilizer, and the components and structures were characterized by X-ray diffraction (XRD), Fourier transform infrared total attenuated reflectance (FTIR-ATR), and laser-induced breakdown spectroscopy (LIBS). Results showed that three MOFs (compounds I, II, and III) were obtained, the MOFs were confirmed as oxalate phosphate oxalate frameworks (OPA-MOF), and ions were adsorbed between layers that contributed to the contents, while urea molecules mainly impacted the structure. The elemental compositions significantly varied among the three compounds; compound I showed the highest content of N (4.

View Article and Find Full Text PDF

Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS), versus attenuated total reflectance spectroscopy (FTIR-ATR) and diffuse reflectance spectroscopy (DRIFT), was firstly applied in quick assessment of rice quality in response to rising CO/temperature instead of conventional time-consuming chemical methods. The influences of elevated CO and higher temperature were identified using FTIR-PAS spectra by principal component analysis (PCA). Variations in the rice functional groups are crucial indicators for rice identification, and the ratio of the intensities of two selected spectral bands was used for correlation analysis with starch, protein, and lipid content, and the ratios all showed a positive linear correlation ( = 0.

View Article and Find Full Text PDF

Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy has been used to determine the nitrate content in aqueous solutions. However, the conventional water deduction algorithm indicated considerable limits in the analysis of samples with low nitrate concentration. In this study, FTIR-ATR spectra of nitrate solution samples with high and low concentrations were obtained, and the spectra were then pre-processed with deconvolution curve-fitting (without water deduction) combined with partial least squares regression (PLSR) to predict the nitrate content.

View Article and Find Full Text PDF

Soils are crucial trace evidence that can establish or exclude the relationship between a suspect, victim, or an object at a particular scene, which could contribute to building a case. Laser-induced breakdown spectroscopy (LIBS) and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy have been demonstrated to be effective techniques for soil characterization owing to its being rapid, non-destructive, and convenient analysis with little sample preparation requirements. Therefore, the principles of LIBS and FTIR-ATR techniques for soil forensic analysis in typical soil samples were investigated and their practical feasibility was tested by applying the techniques to forensic soil samples in two criminal cases.

View Article and Find Full Text PDF

Cuticle is the first barrier for rice to resist blast fungus on the surface of the leaf. Studies on how the rice leaf cuticle responds to rice blast and attempts to perform early detection of rice blast are limited, and these two issues were explored in this study via depth-profiling Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). Rice leaves with four different scales of injury (healthy leaves as CK, asymptomatic leaves from mildly diseased seedlings as S1, infected leaves with fewer than five lesions as S2, and infected leaves with more than 10 lesions as S3) were scanned by three moving mirror velocities 0.

View Article and Find Full Text PDF

Plant cuticle is an important interface on the outmost region of plant and will make the response to environmental changes. However, research about how the variable nutritional status affect plant cuticle is limited. This was the first report about the manners of rice leaf cuticle in answer to different nutritional circumstances of nitrogen detected by the Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) which with a main superiority for in situ and depth-profiling in mid-infrared range.

View Article and Find Full Text PDF

Although polymer-coated controlled-release fertilizers have been under development for decades, their high costs, complex production processes, and potential environmental hazards have limited their application. Therefore, it is necessary to design and develop new materials for controlled nutrient release. In this study, two novel MOFs, compounds I and II, were successfully fabricated and optimized using ferric chloride, phosphoric acid, citric acid, and urea under hydrothermal conditions.

View Article and Find Full Text PDF

Background: An effective and expeditious approach to assess plant nitrogen status is urgently needed in rice production and management as the conventional chemical methods are laborious and time-consuming.

Results: Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to record the spectra of rice leaves for the effective diagnosis of nitrogen nutrition status. The band in the wavenumber range of 1680 to 1630 cm was associated with amide I and that from 1570 to 1510 cm with amide II.

View Article and Find Full Text PDF

The behavior of a metal-organic framework (MOF) compound synthesized in hydrothermal reaction conditions and rich in N, P, and Fe nutrients was explored in the field. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and laser induced breakdown spectroscopy (LIBS) characterization results showed that the chemical structures changed during the degradation process in crop field soil. The scanning electron microscope images showed that the micro-rod of the MOF peeled off and degraded in layers.

View Article and Find Full Text PDF

Recently, polyacrylates (PA) have been applied in coated controlled-release fertilizer (CRF), but the impacts of the soil on the degradation of PA have not been evaluated. In this study, an outdoor agriculture soil buried test was carried out for 12 months to investigate the degradation of PA films. The residual degraded films were taken regularly from the soil and analyzed by SEM, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) and laser-induced breakdown spectroscopy (LIBS).

View Article and Find Full Text PDF

Development of controlled-release urea (CRU) has attracted research attention because of food scarcity problems and environmental concerns. To slow down the nutrient release of CRU coated with waterborne polyacrylate, conventional emulsion polymerization (CEP), conventional emulsion polymerization containing hexadecane (CEP + HD), and miniemulsion polymerization (MP) were carried out to discern the influence of polymerization technique and hexadecane on the properties of emulsions, films, and on the resultant nutrient release profiles of controlled-release urea. The addition of hexadecane improved water resistance, decreased the glass-transition temperature, and slowed down the nutrient release.

View Article and Find Full Text PDF

Detection of pesticide residues is important for ensuring food safety, and it has assumed increased significance. Traditional analytical methods are known for being destructive and cost- and time-intensive. In this study, depth-profiling Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was successfully used as an in situ, nondestructive, and rapid method for detecting tricyclazole residues on three metal surfaces (copper, aluminum, and iron) and subsequently, on the surfaces of fresh rice leaves and ripe husks.

View Article and Find Full Text PDF

Mercury (Hg) contamination in soil-rice systems from industry, mining and agriculture has received increasing attention recently in China. Pot experiments were conducted to research the Hg accumulation capacity of rice under exogenous Hg in the soil and study the major soil factors affecting translocation of Hg from soil to plant. Soil treated with 2 mg kg Hg decreased rice grain yield and inhibited the growth of rice plants.

View Article and Find Full Text PDF

Acrylic latexes are valuable waterborne materials used in controlled-release fertilizers. Controlled-release urea coated with these latexes releases a large amount of nutrients, making it difficult to meet the requirement of plants. Herein, Fe-tannic acid (TA) complexes were blended with acrylic latex and subsequently reassembled on a surface of polyacrylate particles.

View Article and Find Full Text PDF

With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.

View Article and Find Full Text PDF

Understanding nitrogen (N) status in the leaves of Chinese cabbage (Brassica rapa subsp. chinensis) is of significance to both vegetable growth and quality control. Fourier transform infrared photoacoustic spectroscopy was used to perform rapid qualification of N distribution in leaves; a partial least squares algorithm was used to develop a model for prediction of the N content; and N distribution in individual leaves was mapped on the basis of interpolation analysis, which was found to be variable.

View Article and Find Full Text PDF