Publications by authors named "Du Boyu"

The research, which was a component of a broader initiative, focused on synthesizing a pioneering carrier buffer particularly intended for arc atomic emission spectroscopy. By analyzing various evaporation curves and quickly refining the formula of the novel carrier buffer, a more comprehensive, selective, and expedited condition was established for fractionating the target elements from the sample using the single-electrode carrier distillation method, thereby increasing the sensitivity of atomic emission spectrum analysis. Furthermore, the buffer mechanism was thoroughly investigated, using data from field emission scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and energy-dispersive spectrometry (EDS).

View Article and Find Full Text PDF

The safety of nuclear energy, as a low-carbon energy source, has received widespread attention. One of the concerns is the appropriate handling of volatile radioactive elements (e.g.

View Article and Find Full Text PDF

The need for novel anti-thyroid cancer (TC) medications is urgent due to the rising incidence and metastatic rates of malignant TC. In this study, we investigated the effect of Polyphyllin VII (PPVII) to TC cells, and explored their potential mechanism. B-CPAP and TPC-1 cells, were used to analyze the antitumor activity of PPVII by quantifying cell growth and metastasis as well as to study the effect on epithelial mesenchymal transition (EMT).

View Article and Find Full Text PDF

Poly (vinyl alcohol) (PVA), as an excellent degradable plastic feedstock, is limited by its diminishing stability in wet environment, low strength, thermal instability and nonopaque properties. In response to these concerns, a PVA/demethylated lignin-based supramolecular plastic (DPVA-HA-Fe-5) was designed and produced from PVA, demethylated lignin (DL), humic acid (HA) and Fe ions via a simple casting method. As compared with pure PVA plastic, the tensile strength of DPVA-HA-Fe-5 were increased by 411 % to 410.

View Article and Find Full Text PDF

With the development of renewable energy technologies, the demand for efficient energy storage systems is growing. Supercapacitors have attracted considerable attention as efficient electrical energy storage devices because of their excellent power density, fast charging and discharging capabilities, and long cycle life. Carbon nanofibers are widely used as electrode materials in supercapacitors because of their excellent mechanical properties, electrical conductivity, and light weight.

View Article and Find Full Text PDF

γδT cells are important innate immune cells that are involved in the occurrence and development of autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a serious complication of SLE, characterized by the accumulation of immune cells (including γδT cells) in the target organs to participate in the disease process. Therefore, clarifying how γδT cells chemotactically migrate to target organs may be a key to developing therapeutic methods against LN.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a relapsing inflammatory disease with a unique aetiology. The treatment of UC is challenging, and the current clinical therapeutics for colitis have limited efficacy. Thus, finding new and effective treatment options remains urgent.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a common human malignancy and the third leading cause of cancer-related death worldwide. Cancer stem cells (CSCs) were considered to play important roles in the genesis and development of many tumors. In recent years, it has been observed that leukemia inhibitory factor (LIF) might be involved in the regulation of stemness in cancer cells.

View Article and Find Full Text PDF

Background: Liver cancer is one of the most prevalent forms of cancer of the digestive system in our country. The most common subtype of this disease is hepatocellular carcinoma (HCC). Currently, treatment options for HCC patients include surgical resection, liver transplantation, radiofrequency ablation, chemoembolization, and biologic-targeted therapy.

View Article and Find Full Text PDF

The development of chemoresistance in colorectal cancer (CRC) cells was usually thought to be inevitable as a result of continuing exposure to chemotherapeutic drugs. The existence of cancer stem cells (CSCs) within CRC tissues was recently suggested to play importance roles for this process. In this study, in order to mimic a dose schedule used in clinic (continuous infusion), low dose of fluorouracil (IC of 5-FU) was used to treat CRC cells.

View Article and Find Full Text PDF

Immunotherapeutic strategies targeting γδT cells are now recognized as a promising treatment method for hepatocellular carcinoma (HCC). To date, no specific antigen or antigenic epitope recognized by γδT cells has been identified, limiting their application in the field of HCC treatment. Previously, we used an established screening strategy to identify a novel HCC protein antigen recognized by γδT cells called MSP.

View Article and Find Full Text PDF

Natural gas is regarded as the main transition energy under the carbon-neutral strategy and its main consumers are Organization for Economic Cooperation and Development countries, accounting for 44.5% of world consumption in 2021. In order to investigate the effects of technology, industry, and regions on natural gas consumption, 12 major Organization for Economic Cooperation and Development countries from three different country groups were selected in this paper to explore the consumption change.

View Article and Find Full Text PDF

Recently, with the pursuit of high-efficiency electromagnetic wave absorption (EMWA) and electrochemical energy storage (EES) materials, multifunctional lignin-based composites have attracted significant interest due to their low cost, vast availability, and sustainability. In this work, lignin-based carbon nanofibers (LCNFs) was first prepared by electrospinning, pre-oxidation and carbonization processes. Then, different content of magnetic FeO nanoparticles were deposited on the surface of LCNFs via the facile hydrothermal way to produce a series of bifunctional wolfsbane-like LCNFs/FeO composites.

View Article and Find Full Text PDF

Necroptosis is a newly-identified form of gene-regulated cell necrosis that is increasingly considered to be a pathway associated with human pathophysiological conditions. Cells undergoing necroptosis exhibit necrotic phenotypes, including disruption of the plasma membrane integrity, organelle swelling, and cytolysis. Accumulating evidence suggests that trophoblast necroptosis plays a complex role in preeclampsia (PE).

View Article and Find Full Text PDF

Recently, multifunctional lignin-based materials are gaining more and more attention due to their great potential for low-cost and sustainability. In this work, to obtain both an excellent supercapacitor electrode and an outstanding electromagnetic wave (EMW) absorber, a series of multifunctional nitrogen-sulphur (N-S) co-doped lignin-based carbon magnetic nanoparticles (LCMNPs) had been successfully prepared through Mannich reaction at different carbonization temperature. As compared with the directly carbonized lignin carbon (LC), LCMNPs had more nano-size structure and higher specific surface area.

View Article and Find Full Text PDF

The fabrication of pH-sensitive lignin-based materials has received considerable attention in various fields, such as biomass refining, pharmaceuticals, and detecting techniques. However, the pH-sensitive mechanism of these materials is usually depending on the hydroxyl or carboxyl content in the lignin structure, which hinders the further development of these smart materials. Here, a pH-sensitive lignin-based polymer with a novel pH-sensitive mechanism was constructed by establishing ester bonds between lignin and the active molecular 8-hydroxyquinoline (8HQ).

View Article and Find Full Text PDF

Recently, the application of lignin activation by demethylation to improve reactivity and enrich multiple functions has intensively attracted attention. However, it is still challenge up to now due to the low reactivity and complexity of lignin structure. Here, an effective demethylation way was explored by microwave-assisted method for substantially enhancing the hydroxyl (-OH) content and retaining the structure of lignin.

View Article and Find Full Text PDF

Multifunctional lignin-based adsorbents, which have shown great application prospect, have attracted widespread attention. Herein, a series of multifunctional lignin-based magnetic recyclable adsorbents were prepared from carboxymethylated lignin (CL), which was rich in carboxyl group (-COOH). After optimizing the mass ratio of CL to FeO, the prepared CL/FeO (3:1) adsorbent showed efficient adsorption capacities for heavy metal ions.

View Article and Find Full Text PDF

Immunotherapeutic strategies are recognized as promising treatment methods for colorectal cancer (CRC). αβT cell-mediated cytotoxicity is tolerated by cancer cells with low MHC class I expression; therefore, γδT cell-based cancer immunotherapy has generated increasing interest as a potential treatment option. To enhance the potency of γδT cell-based immunotherapy, the key factors involved in the regulation of γδT cells in CRC need to be identified along with devising ways to overcome potential hurdles.

View Article and Find Full Text PDF

Activation of lignin by demethylation for improving the reactivity has attracted extensive attentions. However, it still faces many challenges, such as the unsatisfied increase of hydroxyl content and the undesired cracking of linear linkages. Here, the efficient demethylations for significantly increasing the hydroxyl content and protecting the structure of industrial lignin were explored using lewis acid as modification reagent.

View Article and Find Full Text PDF

Treating hazardous waste Ni from the electroplating industry is mandated world-wide, is exceptionally expensive, and carries a very high CO footprint. Rather than regarding Ni as a disposable waste, the chemicals and petrochemicals industries could instead consider it a huge resource. In the work described herein, we present a strategy for upcycling waste Ni from electroplating wastewater into a photothermal catalyst for converting CO to CO.

View Article and Find Full Text PDF

Upon activation by the pathogen through T-cell receptors (TCRs), γδT cells suppress the pathogenic replication and thus play important roles against viral infections. Targeting SARS-CoV-2 γδT cells provides alternative therapeutic strategies. However, little is known about the recognition of SARS-CoV-2 antigens by γδT cells.

View Article and Find Full Text PDF

The search for renewable energy sources to replace fossil fuel has made lignin a promising carbon-containing resource. In this paper, LaNiO perovskite catalyst supported by mesoporous carrier with specific pore structure was prepared by the pore filling of MCM-41 with citrate complex precursors of nickel and lanthanum. Then the catalysts applied to maize straw lignin depolymerization.

View Article and Find Full Text PDF

The construction of lignin nanoparticles (LNPs) with both lignin properties and nanomaterial properties through controlling the morphologies and structures of lignin is one of the effective ways to realize its application in the field of biomedicine. Firstly, the morphology and chemical structure of LNPs were studied in detailed. The results showed that the chemical structural characteristics of LNPs had not changed significantly and its morphology was more regular shape and narrower size distribution (50-350 nm).

View Article and Find Full Text PDF

Background: Current therapies for colon cancer are hindered by treatment failure and recurrence, mainly due to colon cancer stem cells (CSCs). Thus, treatment using drugs targeting CSCs should be effective in eliminating colon cancer cells and impeding cancer recurrence.

Objective: This study aimed to test if PPVII can be a potent drug candidate for the treatment of colon cancer by targeting CD44 positive colon cancer cells.

View Article and Find Full Text PDF