Annual indoxacarb resistance in Helicoverpa armigera (Hübner) populations collected from various crops in Australia was monitored between 2013 and 2023. Resistance frequency determined by F2 screening using a predetermined discriminating dose of indoxacarb, was lowest in the 2013-2014 and 2015-2016 seasons at 0.0164 and 0.
View Article and Find Full Text PDFBackground: A strain of Helicoverpa armigera with 171-fold resistance to indoxacarb was introgressed with a susceptible strain by serial backcrossing and reselection with indoxacarb resulting in the creation of the near-isogenic GY7-39BC4 strain. Fitness was compared on artificial diet under diapause and non-diapause conditions in resistant, susceptible and F progeny from a reciprocal backcross of the two strains using life history trait analyses. Selection experiments were used to determine stability of resistance.
View Article and Find Full Text PDFType-2 immunity is characterised by interleukin (IL)-4, IL-5 and IL-13, eosinophilia, mucus production, IgE, and alternatively activated macrophages (AAM). However, despite the lack of neutrophil chemoattractants such as CXCL1, neutrophils, a feature of type-1 immunity, are observed in type-2 responses. Consequently, alternative mechanisms must exist to ensure that neutrophils can contribute to type-2 immune reactions without escalation of deleterious inflammation.
View Article and Find Full Text PDFA pathological pathway leading from soluble monomeric to insoluble filamentous Tau is characteristic of many human neurodegenerative diseases, which also exhibit dysfunction and death of brain cells. However, it is unknown how the assembly of Tau into filaments relates to cell loss. To study this, we first used a mouse line transgenic for full-length human mutant P301S Tau to investigate the temporal relationship between Tau assembly into filaments, assessed using anti-Tau antibody AT100, and motor neuron numbers, in the lumbar spinal cord.
View Article and Find Full Text PDFThe ability to effectively detect changes in susceptibility to insecticides is an integral component of resistance management strategies and is highly dependent upon precision of methods deployed. Between 2013 and 2016, F2 screens were performed for detection of resistance alleles in Helicoverpa armigera (Hübner) to emamectin benzoate, chlorantraniliprole, and indoxacarb in major cropping regions of eastern Australia. Resistance to emamectin benzoate was not detected.
View Article and Find Full Text PDFHaemangioblastoma is a rare malignancy of the CNS where vascular proliferation causes lesions due to endothelial propagation. We found that conditionally expressing mutant Kras, using Rag1-Cre, gave rise to CNS haemangioblastoma in the cortex and cerebellum in mice that present with highly vascular tumours with stromal cells similar to human haemangioblastomas. The aberrant haemangioblastoma endothelial cells do not express mutant Kras but rather the mutant oncogene is expressed in CNS interstitial cells, including neuronal cells and progeny.
View Article and Find Full Text PDFThe suprachiasmatic nucleus (SCN) coordinates circadian rhythms that adapt the individual to solar time. SCN pacemaking revolves around feedback loops in which expression of Period (Per) and Cryptochrome (Cry) genes is periodically suppressed by their protein products. Specifically, PER/CRY complexes act at E-box sequences in Per and Cry to inhibit their transactivation by CLOCK/BMAL1 heterodimers.
View Article and Find Full Text PDFBackground: Interleukin-25 (IL-25) is a potent activator of type-2 immune responses. Mucosal inflammation in ulcerative colitis is driven by type-2 cytokines. We have previously shown that a neutralizing anti-IL-25 antibody abrogated airways hyperreactivity in an experimental model of lung allergy.
View Article and Find Full Text PDFNuocytes are essential in innate type 2 immunity and contribute to the exacerbation of asthma responses. Here we found that nuocytes arose in the bone marrow and differentiated from common lymphoid progenitors, which indicates they are distinct, previously unknown members of the lymphoid lineage. Nuocytes required interleukin 7 (IL-7), IL-33 and Notch signaling for development in vitro.
View Article and Find Full Text PDFBackground: IL-4, IL-5, and IL-13 are thought to be central to the allergic asthmatic response. Previous work supposed that the essential source of these cytokines was CD4(+) T(H)2 cells. However, more recent studies have suggested that other innate production of type 2 cytokines might be as important.
View Article and Find Full Text PDFRemoval of the assembly factor eukaryotic initiation factor 6 (eIF6) is critical for late cytoplasmic maturation of 60S ribosomal subunits. In mammalian cells, the current model posits that eIF6 release is triggered following phosphorylation of Ser 235 by activated protein kinase C. In contrast, genetic studies in yeast indicate a requirement for the ortholog of the SBDS (Shwachman-Bodian-Diamond syndrome) gene that is mutated in the inherited leukemia predisposition disorder Shwachman-Diamond syndrome (SDS).
View Article and Find Full Text PDFMyelodysplastic Syndromes (MDS) are a heterogeneous group of acquired clonal bone marrow disorders, characterised by ineffective hematopoiesis. The mechanisms underlying many of these blood disorders have remained elusive due to the difficulty in pinpointing specific gene mutations or haplo-insufficencies, which can occur within large deleted regions. However, there is an increasing interest in the classification of some of these diseases as ribosomopathies.
View Article and Find Full Text PDFThe identification of the genes associated with chromosomal translocation breakpoints has fundamentally changed understanding of the molecular basis of hematological malignancies. By contrast, the study of chromosomal deletions has been hampered by the large number of genes deleted and the complexity of their analysis. We report the generation of a mouse model for human 5q- syndrome using large-scale chromosomal engineering.
View Article and Find Full Text PDFLMO2 is a transcription regulator involved in human T-cell leukemia, including some occurring in X-SCID gene therapy trials, and in B-cell lymphomas and prostate cancer. LMO2 functions in transcription complexes via protein-protein interactions involving two LIM domains and causes a preleukemic T-cell development blockade followed by clonal tumors. Therefore, LMO2 is necessary but not sufficient for overt neoplasias, which must undergo additional mutations before frank malignancy.
View Article and Find Full Text PDFRecurrent reciprocal chromosomal translocations are present in more than 50% of leukemias. A deeper understanding of how they affect cancer initiation is essential for evaluating the origins of cancer and the potential for therapy based on the translocation products. Mouse models of chromosomal translocations are required for this.
View Article and Find Full Text PDFThe LIM-domain protein LMO2 is a T-cell oncogenic protein first recognized by gene activation through chromosomal translocations, but it is also responsible for leukaemias arising as secondary, adverse effects in an X-SCID gene therapy trial. There are no specific reagents currently available to analyse the LMO2 multiprotein complex or to combat LMO2-dependent leukaemias. Accordingly, we have isolated an anti-LMO2 single chain Fv antibody fragment to determine if intracellular interference with LMO2-protein complexes can avert LMO2-dependent functions in normal and cancer settings.
View Article and Find Full Text PDFChromosomal translocations involving the Mixed-Lineage Leukaemia (MLL) gene underlie many human leukaemias and MLL rearrangements are found in both acute myelogenous and acute lymphoblastic leukaemias. To assess the functionally relevant haematopoietic cell contexts for MLL fusions to be tumorigenic, we have generated different lines of mice in which de novo Mll-associated translocations occur. In these models, reciprocal chromosomal translocations occur by means of Cre-loxP-mediated recombination (translocator mice) in different cells of the haematopoietic system (namely haematopoietic stem cells, semi-committed progenitors or committed T or B cells).
View Article and Find Full Text PDFMouse models of human cancers are important for understanding determinants of overt disease and for "preclinical" development of rational therapeutic strategies; for instance, based on macrodrugs. Chromosomal translocations underlie many human leukemias, sarcomas, and epithelial tumors. We have developed three technologies based on homologous recombination in mouse ES cells to mimic human chromosome translocations.
View Article and Find Full Text PDFChromosomal translocations are primary events in tumorigenesis. Those involving the mixed lineage leukaemia (MLL) gene are found in various guises and it is unclear whether MLL fusions can affect haematopoietic differentiation. We have used a model in which chromosomal translocations are generated in mice de novo by Cre-loxP-mediated recombination (translocator mice) to compare the functionally relevant haematopoietic cell contexts for Mll fusions, namely pluripotent stem cells, semicommitted progenitors or committed cells.
View Article and Find Full Text PDFThe EWS-ERG fusion protein is found in human sarcomas with the chromosomal translocation t(21;22)(q22;q12), where the translocation is considered to be an initiating event in sarcoma formation within uncommitted mesenchymal cells, probably long-lived progenitors capable of self renewal. The fusion protein may not therefore have an oncogenic capability beyond these progenitors. To assess whether EWS-ERG can be a tumour initiator in cells other than mesenchymal cells, we have analysed Ews-ERG fusion protein function in a cellular environment not typical of that found in human cancers, namely, committed lymphoid cells.
View Article and Find Full Text PDFKnock-in models of tumor-specific chromosomal translocations can generate lethal mutations. To circumvent this, a new conditional gene fusion model has been developed (invertor mice) and exemplified with the Ews-ERG fusion oncogene. An ERG segment, flanked by loxP sites, was knocked in to an intron of the Ews gene but in an inverted transcription orientation and lineage-specific Ews-ERG fusion created by Cre-mediated inversion.
View Article and Find Full Text PDFThe LMO2 gene encodes a LIM-only protein and is a target of chromosomal translocations in human T-cell leukemia. Recently, two X-SCID patients treated by gene therapy to rescue T-cell lymphopoiesis developed T-cell leukemias with retroviral insertion into the LMO2 gene causing clonal T-cell proliferation. In view of the specificity of LMO2 in T-cell tumorigenesis, we investigated a possible role for Lmo2 in T-lymphopoiesis, using conditional knockout of mouse Lmo2 with loxP-flanked Lmo2 and Cre recombinase alleles driven by the promoters of the lymphoid-specific genes Rag1, CD19, and Lck.
View Article and Find Full Text PDFThe etiology of human tumors often involves chromosomal translocations. Models that emulate translocations are essential to understanding the determinants of frank malignancy, those dictating the restriction of translocations to specific lineages, and as a basis for development of rational therapeutic methods. We demonstrate that developmentally regulated Cre-loxP-mediated interchromosomal recombination between the Mll gene, whose human counterpart is involved in a spectrum of leukemias, and the Enl gene creates reciprocal chromosomal translocations that cause myeloid tumors.
View Article and Find Full Text PDFThe LMO2 gene is involved in T-cell acute leukaemia (T-ALL) in children with chromosomal translocations t(11;14)(p13;q11) or (7;11)(q35;p13). Transgenic expression of Lmo2 in T cells results in clonal tumours with long latency indicating that mutations in other genes are required for the development of overt tumours. RAG V-D-J recombinase can mediate genetic transposition and thus might create the secondary mutations necessary for T-ALL.
View Article and Find Full Text PDF