Publications by authors named "Druzhinina T"

The thermomechanical stability of the anion-cation exchange matrix "Polikon AC" on viscose nonwoven materials is investigated. In this work, a molecular model of a solvation environment for experimentally obtained "Polikon AC" mosaic membranes is refined. Mosaic membranes on a viscose fiber base were fabricated by the method of polycondensation filling.

View Article and Find Full Text PDF

Various complex self-assembled morphologies of lamellar- and cylinder-forming block copolymers comprising poly(dimethylsiloxane)-b-polylactide (PDMS-b-PLA) confined in cylindrical channels were generated. Combining top-down lithography with bottom-up block copolymer self-assembly grants access to morphologies that are otherwise inaccessible with the bulk materials. Channel diameter (D) was systematically varied with four diblock copolymers having different compositions and bulk domain spacing (L0), corresponding to a range of frustration ratios (D/L0 from 2 to 4).

View Article and Find Full Text PDF

P1-[11-(Anthracen-9-ylmethoxy)undecyl]-P2-(2-acetamido-2-deoxy-α-D-glucopyranosyl) diphosphate, a fluorescent derivative of undecyl diphosphate 2-acetamido-2-deoxyglucose, was chemically synthesized. The ability of the compound to serve as acceptor substrate of D-rhamnose residue in the enzymatic reaction catalyzed by D-rhamnosyltransferase from Pseudomonas aeruginosa PAO1 was demonstrated.

View Article and Find Full Text PDF

Objective: To show the capabilities of ultrasound monitoring to assess consolidation processes in fractures of long tubular bones in the use of bioactive material-containing implants.

Material And Methods: Eighty-two (45.1%) patients whose bone fragments had been fixed with bioactive material-coated plates and 100 (54.

View Article and Find Full Text PDF

11-[(2-Pyridyl)amino]undecyl phosphate and 11-[(9-anthracenylcarbonyl)amino]undecyl phosphate were chemically synthesized. The abiliy of these new fluorescent derivatives of undecyl phosphate to serve as acceptor substrate of galactosyl phosphate residue in the enzymic reaction catalyzed by galactosylphosphotransferase from Salmonella anatum or Salmonella newport membrane preparation was demonstrated.

View Article and Find Full Text PDF

In this study, synthetic acceptor substrate GlcNAc alpha-PO3-PO3-(CH2)11-O-phenyl (GlcNAc-PP-PhU) was employed in glycosyl transferase assays to characterize the WbuP galactosyltransferase activity. This activity was time- and enzyme concentration-dependent. The optimal enzyme activity was observed at pH 6.

View Article and Find Full Text PDF

Fluorescent 11-[(9'-anthracenyl)methoxy]undecyl phosphate and P1-{11-[(9'-anthracenyl)methoxy]undecyl}-P2-(alpha-D-galactopyranosyl) diphosphate were chemically synthesized for the first time. The ability of the first compound to serve as substrate-acceptor ofgalactosyl phosphate residue and the second compound of mannosyl residue in enzymic reactions catalyzed by galactosylphosphotransferase and mannosyltransferase from Salmonella newport membrane preparation was demonstrated.

View Article and Find Full Text PDF

A fully controllable process for the fabrication of carbon nanotube assemblies is presented on the basis of a sequential electrochemical oxidation lithography process. This approach utilizes the local chemical conversion of a n-octadecyltrichlorosilane self-assembled monolayer into a template featuring polar acid groups. The capability to utilize such chemically active templates for the site-selective assembly of individual carbon nanotubes was demonstrated, and a hierarchical, sequential structuring routine to obtain crossed CNT configurations, formed by preselected carbon nanotubes, was implemented.

View Article and Find Full Text PDF

The assembly of the repeating units of O-antigens in Gram negative bacteria is catalyzed by specific glycosyltransferases. Previously we used GlcNAc/GalNAcα-diphosphate-phenoxyundecyl as natural acceptor substrate analogs in assays of the transfer of radioactive sugars by bacterial glycosyltransferases. In order to develop new, fluorescence based assays we have synthesized a fluorescent acceptor P¹-[11-(anthracen-9-ylmethoxy)undecyl]-P²-(2-acetamido-2-deoxy-α-D-galactopyranosyl) diphosphate and have shown that the compound was an excellent acceptor for glucosyltransferase WbdN from Escherichia coli (E.

View Article and Find Full Text PDF

P(1)-(Phenoxyundecyl)-P(2)-(alpha-D-galactopyranosyl) diphosphate as well as P(1)-(11-phenoxyundecyl)-P(2)-(alpha-D-glucopyranosyl) diphosphate are newly synthesized and their ability to serve as substrate-acceptor of mannosyl residue in enzymic reaction catalyzed by mannosyltransferase from Salmonella newport membrane preparation is investigated. The possibility ofgalactosyl-containing derivative to serve as mannosyl acceptor from GDP-Man is established whereas glucosyl-containing compound is inactive in this process.

View Article and Find Full Text PDF

The enterohemorrhagic O157 strain of Escherichia coli, which is one of the most well-known bacterial pathogens, has an O-antigen repeating unit structure with the sequence [-2-d-Rha4NAcα1-3-l-Fucα1-4-d-Glcβ1-3-d-GalNAcα1-]. The O-antigen gene cluster of E. coli O157 contains the genes responsible for the assembly of this repeating unit and includes wbdN.

View Article and Find Full Text PDF

One of the major tasks of tissue engineering is to produce tissue grafts for the replacement or regeneration of damaged tissue, and natural and recombinant silk-based polymer scaffolds are promising candidates for such grafts. Here, we compared two porous scaffolds made from different silk proteins, fibroin of Bombyx mori and a recombinant analog of Nephila clavipes spidroin 1 known as rS1/9, and their biocompatibility and degradation behavior in vitro and in vivo. The vascularization and intergrowth of the connective tissue, which was penetrated with nerve fibers, at 8 weeks after subcutaneous implantation in Balb/c mice was more profound using the rS1/9 scaffolds.

View Article and Find Full Text PDF

A simple scheme of synthesis of P¹-(11-phenoxyundecyl)-P²-(2-acetamido-2-deoxy-α-D-galactopyranosyl) diphosphate synthetic lipid acceptor for glycosyltransferases participating in gram-negative bacteria O-antigenic polysaccharides is suggested.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have developed into a standard material used as a building block for nanotechnological developments. Based on the unique properties that make CNTs useful for many different applications in nanotechnology, optics, electronics, and material science, there has been a rapid development of this research area and many different applications have emerged in the past few years. Frequently, the alignment and immobilization of CNTs play an important role for many applications and different strategies, in particular post-synthesis approaches, can be applied.

View Article and Find Full Text PDF

A synthesis of 11-phenoxyundecyl phosphate and its biochemical transformation (using GlcNAc-P transferase from Salmonella arizonae O:59 membranes catalysing transfer of GlcNc-phosphate from UDP-GlcNAc on lipid-phosphate) into P(1)-11-phenoxyundecyl, P(2)-2-acetamido-2-deoxy-α-D-glucopyranosyl diphosphate are described.

View Article and Find Full Text PDF

A new, fast, alternative approach for the fabrication of carbon nanotube (CNT) atomic force microscopy (AFM) tips is reported. Thereby, the tube material is grown on the apex of an AFM tip by utilizing microwave irradiation and selective heating of the catalyst. Reaction times as short as three minutes allowed the fabrication of CNT AFM tips in a highly efficient process.

View Article and Find Full Text PDF

Aims: To study the question whether acidic exopolysaccharide (EPS) modification, e.g. pyruvylation, plays any role in the development of Rhizobium leguminosarum/Pisum sativum symbiosis.

View Article and Find Full Text PDF

A new scheme of synthesis of 11-phenoxyundecyl phosphate from 11-bromoundecanoic acid was suggested for its ability to react as an acceptor of 2-acetamido-2-deoxy-alpha-D-glucopyranosyl phosphate in a reaction catalyzed by UDP-N-acetylglucosamine : polyprenyl phosphate N-acetylglucosamine phosphotransferase from Salmonella arizona O:59.

View Article and Find Full Text PDF

The level of immunoglobulin E (IgE) in patients with different pyo-inflammatory diseases was assessed and it was found to elevate in patients with acute appendicitis in 49% of cases, in patients with chronic relapsing furunculosis (CRF) in 41%, with chronic osteomyelitis--in 66.6%. In 8 out of 16 examined patients with the elevated level of IgE there were antibodies to toxocars in titers 1:800, 1:400.

View Article and Find Full Text PDF

Several methods for simple and efficient chemical synthesis of dolichyl phosphates and their analogues and derivatives are briefly summarized with a special emphasis on chemical modification of phosphoryl group and preparation of dolichyl phosphates labelled at the omega-end and at the gamma-isoprene unit of the isoprene chain by fluorescent groups, 2-aminopyridine and 1-aminonaphtalene residues. Additionally, data on biochemical assays with application of the compounds mentioned above are presented.

View Article and Find Full Text PDF

Symbiotic nitrogen-fixing bacteria Rhizobium leguminosarum by. viciae VF39 secrete an acidic heteropolysaccharide, the biosynthesis of which involves the stage of polyprenyl diphosphate octasaccharide formation, with its carbohydrate fragment corresponding to the repeating polymer unit. The amino acid analysis of the product of the pssA gene, we have earlier identified, showed its homology to bacterial polyisoprenyl phosphate hexose 1-phosphate transferases catalyzing the formation of phosphodiester bonds between polyprenyl phosphates and hexose 1-phosphates, whose donors are nucleotide sugars.

View Article and Find Full Text PDF
Article Synopsis
  • A microfabricated Fabry-Pérot interferometer features nanochannels with heights ranging from 6 to 20 nm, allowing for precise examination of liquid behavior.
  • Through multiple beam interferometry, the device studies liquids like ethanol and water without the need for fluorescent markers.
  • An unusual filling mode for partially wetting water was identified, possibly due to significant gas entrapment within the nanochannels.
View Article and Find Full Text PDF