The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.
View Article and Find Full Text PDFAntibodies targeting the V1V2 apex of the HIV-1 envelope (Env) trimer comprise one of the most commonly elicited categories of broadly neutralizing antibodies. Structures of these antibodies indicate diverse modes of Env recognition typified by antibodies of the PG9 class and the PGT145 class. The mode of recognition, however, has been unclear for the most potent of the V1V2 apex-targeting antibodies, CAP256-VRC26.
View Article and Find Full Text PDFThe vaccine elicitation of broadly neutralizing antibodies against HIV-1 is a long-sought goal. We previously reported the amino-terminal eight residues of the HIV-1-fusion peptide (FP8) - when conjugated to the carrier protein, keyhole limpet hemocyanin (KLH) - to be capable of inducing broadly neutralizing responses against HIV-1 in animal models. However, KLH is a multi-subunit particle derived from a natural source, and its manufacture as a clinical product remains a challenge.
View Article and Find Full Text PDFBackground: Respiratory syncytial virus (RSV) subtypes, A and B, co-circulate in annual epidemics and alternate in dominance. We have shown that a subtype A RSV fusion (F) glycoprotein, stabilized in its prefusion conformation by DS-Cav1 mutations, is a promising RSV-vaccine immunogen, capable of boosting RSV-neutralizing titers in healthy adults. In both humans and vaccine-tested animals, neutralizing titers elicited by this subtype A DS-Cav1 immunogen were ~ 2- to 3-fold higher against the homologous subtype A virus than against the heterologous subtype B virus.
View Article and Find Full Text PDFLineage-based vaccine design is an attractive approach for eliciting broadly neutralizing antibodies (bNAbs) against HIV-1. However, most bNAb lineages studied to date have features indicative of unusual recombination and/or development. From an individual in the prospective RV217 cohort, we identified three lineages of bNAbs targeting the membrane-proximal external region (MPER) of the HIV-1 envelope.
View Article and Find Full Text PDFDiverse entry inhibitors targeting the gp120 subunit of the HIV-1 envelope (Env) trimer have been developed including BMS-626529, also called temsavir, a prodrug version of which is currently in phase III clinical trials. Here we report the characterization of a panel of small-molecule inhibitors including BMS-818251, which we show to be >10-fold more potent than temsavir on a cross-clade panel of 208-HIV-1 strains, as well as the engineering of a crystal lattice to enable structure determination of the interaction between these inhibitors and the HIV-1 Env trimer at higher resolution. By altering crystallization lattice chaperones, we identify a lattice with both improved diffraction and robust co-crystallization of HIV-1 Env trimers from different clades complexed to entry inhibitors with a range of binding affinities.
View Article and Find Full Text PDFParainfluenza virus types 1-4 (PIV1-4) are highly infectious human pathogens, of which PIV3 is most commonly responsible for severe respiratory illness in newborns, elderly, and immunocompromised individuals. To obtain a vaccine effective against all four PIV types, we engineered mutations in each of the four PIV fusion (F) glycoproteins to stabilize their metastable prefusion states, as such stabilization had previously enabled the elicitation of high-titer neutralizing antibodies against the related respiratory syncytial virus. A cryoelectron microscopy structure of an engineered PIV3 F prefusion-stabilized trimer, bound to the prefusion-specific antibody PIA174, revealed atomic-level details for how introduced mutations improved stability as well as how a single PIA174 antibody recognized the trimeric apex of prefusion PIV3 F.
View Article and Find Full Text PDFA central goal of HIV-1 vaccine research is the elicitation of antibodies capable of neutralizing diverse primary isolates of HIV-1. Here we show that focusing the immune response to exposed N-terminal residues of the fusion peptide, a critical component of the viral entry machinery and the epitope of antibodies elicited by HIV-1 infection, through immunization with fusion peptide-coupled carriers and prefusion stabilized envelope trimers, induces cross-clade neutralizing responses. In mice, these immunogens elicited monoclonal antibodies capable of neutralizing up to 31% of a cross-clade panel of 208 HIV-1 strains.
View Article and Find Full Text PDFAntigen multimerization on a nanoparticle can result in improved neutralizing antibody responses. A platform that has been successfully used for displaying antigens from a number of different viruses is ferritin, a self-assembling protein nanoparticle that allows the attachment of multiple copies (24 monomers or 8 trimers) of a single antigen. Here, we design two-component ferritin variants that allow the attachment of two different antigens on a single particle in a defined ratio and geometric pattern.
View Article and Find Full Text PDFThe elicitation of autologous neutralizing responses by immunization with HIV-1 envelope (Env) trimers conformationally stabilized in a prefusion closed state has generated considerable interest in the HIV-1 vaccine field. However, soluble prefusion closed Env trimers have been produced from only a handful of HIV-1 strains, limiting their utility as vaccine antigens and B cell probes. Here, we report the engineering from 81 HIV-1 strains of soluble, fully cleaved, prefusion Env trimers with appropriate antigenicity.
View Article and Find Full Text PDFThe HIV-1 envelope (Env) spike is a conformational machine that transitions between prefusion (closed, CD4- and CCR5-bound) and postfusion states to facilitate HIV-1 entry into cells. Although the prefusion closed conformation is a potential target for inhibition, development of small-molecule leads has been stymied by difficulties in obtaining structural information. Here, we report crystal structures at 3.
View Article and Find Full Text PDFMost HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought.
View Article and Find Full Text PDFWhile the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques.
View Article and Find Full Text PDFA goal for an HIV-1 vaccine is to overcome virus variability by inducing broadly neutralizing antibodies (bnAbs). One key target of bnAbs is the glycan-polypeptide at the base of the envelope (Env) third variable loop (V3). We have designed and synthesized a homogeneous minimal immunogen with high-mannose glycans reflective of a native Env V3-glycan bnAb epitope (Man-V3).
View Article and Find Full Text PDFThe HIV-1 envelope (Env) trimer is a target for vaccine design as well as a conformational machine that facilitates virus entry by transitioning between prefusion-closed, CD4-bound, and coreceptor-bound conformations by transitioning into a postfusion state. Vaccine designers have sought to restrict the conformation of the HIV-1 Env trimer to its prefusion-closed state as this state is recognized by most broadly neutralizing, but not nonneutralizing, antibodies. We previously identified a disulfide bond, I201C-A433C (DS), which stabilizes Env in the vaccine-desired prefusion-closed state.
View Article and Find Full Text PDFBinding of the gp120 envelope (Env) glycoprotein to the CD4 receptor is the first step in the HIV-1 infectious cycle. Although the CD4-binding site has been extensively characterized, the initial receptor interaction has been difficult to study because of major CD4-induced structural rearrangements. Here we used cryogenic electron microscopy (cryo-EM) to visualize the initial contact of CD4 with the HIV-1 Env trimer at 6.
View Article and Find Full Text PDFA comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41.
View Article and Find Full Text PDFDetailed studies of the broadly neutralizing antibodies (bNAbs) that underlie the best available examples of the humoral immune response to HIV are providing important information for the development of therapies and prophylaxis for HIV-1 infection. Here, we report a CD4-binding site (CD4bs) antibody, named N6, that potently neutralized 98% of HIV-1 isolates, including 16 of 20 that were resistant to other members of its class. N6 evolved a mode of recognition such that its binding was not impacted by the loss of individual contacts across the immunoglobulin heavy chain.
View Article and Find Full Text PDFMolecular understanding of serological immunity to influenza has been confounded by the complexity of the polyclonal antibody response in humans. Here we used high-resolution proteomics analysis of immunoglobulin (referred to as Ig-seq) coupled with high-throughput sequencing of transcripts encoding B cell receptors (BCR-seq) to quantitatively determine the antibody repertoire at the individual clonotype level in the sera of young adults before and after vaccination with trivalent seasonal influenza vaccine. The serum repertoire comprised between 40 and 147 clonotypes that were specific to each of the three monovalent components of the trivalent influenza vaccine, with boosted pre-existing clonotypes accounting for ∼60% of the response.
View Article and Find Full Text PDFUnlabelled: All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site.
View Article and Find Full Text PDFStructure-based vaccine design has been used to develop immunogens that display conserved neutralization sites on pathogens such as HIV-1, respiratory syncytial virus (RSV), and influenza. Improving the immunogenicity of these designed immunogens with adjuvants will require formulations that do not alter protein antigenicity. Here, we show that nanoparticle-forming thermoresponsive polymers (TRP) allow for co-delivery of RSV fusion (F) protein trimers with Toll-like receptor 7 and 8 agonists (TLR-7/8a) to enhance protective immunity.
View Article and Find Full Text PDFHuman cytomegalovirus encodes at least 25 membrane glycoproteins that are found in the viral envelope(1). While gB represents the fusion protein, two glycoprotein complexes control the tropism of the virus: the gHgLgO trimer is involved in the infection of fibroblasts, and the gHgLpUL128L pentamer is required for infection of endothelial, epithelial and myeloid cells(2-5). Two reports suggested that gB binds to ErbB1 and PDGFRα (refs 6,7); however, these results do not explain the tropism of the virus and were recently challenged(8,9).
View Article and Find Full Text PDFNat Struct Mol Biol
September 2016
Structure-based design of vaccines, particularly the iterative optimization used so successfully in the structure-based design of drugs, has been a long-sought goal. We previously developed a first-generation vaccine antigen called DS-Cav1, comprising a prefusion-stabilized form of the fusion (F) glycoprotein, which elicits high-titer protective responses against respiratory syncytial virus (RSV) in mice and macaques. Here we report the improvement of DS-Cav1 through iterative cycles of structure-based design that significantly increased the titer of RSV-protective responses.
View Article and Find Full Text PDF