BCR-ABL1 compound mutations can lead to resistance to ABL1 inhibitors in chronic myeloid leukemia (CML), which could be targeted by combining the ATP-site inhibitor ponatinib and the allosteric inhibitor asciminib. Here, we report the clinical validation of this approach in a CML patient, providing a basis for combination therapy to overcome such resistance.
View Article and Find Full Text PDFEnasidenib (ENA) is an inhibitor of isocitrate dehydrogenase 2 (IDH2) approved for the treatment of patients with IDH2-mutant relapsed/refractory acute myeloid leukemia (AML). In this phase 2/1b Beat AML substudy, we applied a risk-adapted approach to assess the efficacy of ENA monotherapy for patients aged ≥60 years with newly diagnosed IDH2-mutant AML in whom genomic profiling demonstrated that mutant IDH2 was in the dominant leukemic clone. Patients for whom ENA monotherapy did not induce a complete remission (CR) or CR with incomplete blood count recovery (CRi) enrolled in a phase 1b cohort with the addition of azacitidine.
View Article and Find Full Text PDFAnnu Rev Pharmacol Toxicol
January 2024
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors.
View Article and Find Full Text PDFNext-generation sequencing (NGS) to identify pathogenic mutations is an integral part of acute myeloid leukemia (AML) therapeutic decision-making. The concordance in identifying pathogenic mutations among different NGS platforms at different diagnostic laboratories has been studied in solid tumors but not in myeloid malignancies to date. To determine this interlaboratory concordance, we collected a total of 194 AML bone marrow or peripheral blood samples from newly diagnosed patients with AML enrolled in the Beat AML Master Trial (BAMT) at 2 academic institutions.
View Article and Find Full Text PDFPurpose: Targeted therapeutics are a goal of medicine. Methods for targeting T-cell lymphoma lack specificity for the malignant cell, leading to elimination of healthy cells. The T-cell receptor (TCR) is designed for antigen recognition.
View Article and Find Full Text PDFCancer research training programs build our future biomedical workforce. Training is often centered for students residing close to research institutions, making access more challenging for rural students. A cancer research training program was developed for high school students residing in five geographical regions across Oregon.
View Article and Find Full Text PDFBackground: Patients with acute myeloid leukemia (AML) who have tumor protein p53 (TP53) mutations or a complex karyotype have a poor prognosis, and hypomethylating agents are often used. The authors evaluated the efficacy of entospletinib, an oral inhibitor of spleen tyrosine kinase, combined with decitabine in this patient population.
Methods: This was a multicenter, open-label, phase 2 substudy of the Beat AML Master Trial (ClinicalTrials.
Unlabelled: Mutations in Fms-like tyrosine kinase 3 (FLT3) are common drivers in acute myeloid leukemia (AML) yet FLT3 inhibitors only provide modest clinical benefit. Prior work has shown that inhibitors of lysine-specific demethylase 1 (LSD1) enhance kinase inhibitor activity in AML. Here we show that combined LSD1 and FLT3 inhibition induces synergistic cell death in FLT3-mutant AML.
View Article and Find Full Text PDFTyrosine kinase inhibitor therapy revolutionized chronic myeloid leukemia treatment and showed how targeted therapy and molecular monitoring could be used to substantially improve survival outcomes. We used chronic myeloid leukemia as a model to understand a critical question: why do some patients have an excellent response to therapy, while others have a poor response? We studied gene expression in whole blood samples from 112 patients from a large phase III randomized trial (clinicaltrials gov. Identifier: NCT00471497), dichotomizing cases into good responders (BCR::ABL1 ≤10% on the International Scale by 3 and 6 months and ≤0.
View Article and Find Full Text PDFMutations in the gene Additional Sex-Combs Like 1 (ASXL1) are recurrent in myeloid malignancies as well as the pre-malignant condition clonal hematopoiesis, where they are universally associated with poor prognosis. However, the role of ASXL1 in myeloid lineage maturation is incompletely described. To define the role of ASXL1 in myelopoiesis, we employed single cell RNA sequencing and a murine model of hematopoietic-specific Asxl1 deletion.
View Article and Find Full Text PDFRisk stratification in acute myeloid leukemia (AML) remains principle in survival prognostication and treatment selection. The 2022 European LeukemiaNet (ELN) recommendations were recently published, with notable updates to risk group assignment. The complexity of risk stratification and comparative outcomes between the 2022 and 2017 ELN guidelines remains unknown.
View Article and Find Full Text PDFThe Philadelphia chromosome (Ph) resulting from the t(9;22) translocation generates the oncogenic BCR::ABL1 fusion protein that is most commonly associated with chronic myeloid leukemia (CML) and Ph-positive (Ph+) acute lymphoblastic leukemia (ALL). There are also rare instances of patients (≤1%) with newly diagnosed acute myeloid leukemia (AML) that harbor this translocation (Paietta et al., 1881 [1998]; Keung et al.
View Article and Find Full Text PDFDrug resistance in chronic myeloid leukaemia (CML) may occur via mutations in the causative BCR::ABL1 fusion or BCR::ABL1-independent mechanisms. We analysed 48 patients with BCR::ABL1-independent resistance for the presence of secondary fusion genes by RNA sequencing. We identified 10 of the most frequently detected secondary fusions in 21 patients.
View Article and Find Full Text PDF