Publications by authors named "Dror Malka"

This paper proposes a unique configuration for an all-optical D Flip Flop (D-FF) utilizing a quasi-square ring resonator (RR) and T-Splitter, as well as NOT and OR logic gates within a 2-dimensional square lattice photonic crystal (PC) structure. The components realizing the all-optical D-FF comprise of optical waveguides in a 2D square lattice PC of 45 × 23 silicon (Si) rods in a silica (SiO) substrate. The utilization of these specific materials has facilitated the fabrication process of the design, diverging from alternative approaches that employ an air substrate, a method inherently unattainable in fabrication.

View Article and Find Full Text PDF

Visible light communication (VLC) is becoming more relevant due to the accelerated advancement of optical fibers. Polymer optical fiber (POF) technology appears to be a solution to the growing demand for improved transmission efficiency and high-speed data rates in the visible light range. However, the VLC system requires efficient splitters with low power losses to expand the optical energy capability and boost system performance.

View Article and Find Full Text PDF

The operation of a four-channel multiplexer, utilizing multimode interference (MMI) wavelength division multiplexing (WDM) technology, can be designed through the cascading of MMI couplers or by employing angled MMI couplers. However, conventional designs often occupy a larger footprint, spanning a few millimeters, thereby escalating the energy power requirements for the photonic chip. In response to this challenge, we propose an innovative design for a four-channel silicon nitride (SiN) MMI coupler with a compact footprint.

View Article and Find Full Text PDF

A commercial thermo-optic phase shifter (TOPS) is an efficient solution to the imbalance problem in the fabrication process of Mach-Zehnder modulator (MZM) arms. The TOPS consumes electrical power and transforms it into thermal energy, which changes the real part of the effective refractive index at the waveguide and adjusts the MZM transfer function to work in the linear region. The common model being used today is constructed with only one heater; however, this solution requires more electrical power, which can increase the transmitter system cost.

View Article and Find Full Text PDF

This paper reviews recent advancements in all-optical memory components, particularly focusing on various types of all-optical flip-flops (FFs) based on photonic crystal (PC) structures proposed in recent years. PCs, with their unique optical properties and engineered structures, including photonic bandgap control, enhanced light-matter interaction, and compact size, make them especially suitable for optical FFs. The study explores three key materials, silicon, chalcogenide glass, and gallium arsenide, known for their high refractive index contrast, compact size, hybrid integration capability, and easy fabrication processes.

View Article and Find Full Text PDF

This paper presents a new design for a 1 × 4 optical power splitter using multimode interference (MMI) coupler in silicon nitride (SiN) strip waveguide structures. The main functionality of the proposed design is to use SiN for dealing with the back reflection (BR) effect that usually happens in silicon (Si) MMI devices due to the self-imaging effect and the higher index contrast between Si and silicon dioxide (SiO). The optimal device parameters were determined through numerical optimizations using the beam propagation method (BPM) and finite difference time domain (FDTD).

View Article and Find Full Text PDF

The study of designing a compact transverse electric (TE)/transverse magnetic (TM) polarization multimode interference (MMI) combiner based on silicon slot-waveguide technology is proposed for solving the high demands for high-speed ability alongside more energy power and minimizing the environmental impact of power consumption, achieving a balance between high-speed performance and energy efficiency has become an important consideration in an optical communication system. The MMI coupler has a significant difference in light coupling (beat-length) for TM and TE at 1550 nm wavelength. By controlling the light propagation mechanism inside the MMI coupler, a lower order of mode can be obtained which can lead to a shorter device.

View Article and Find Full Text PDF

Transceivers that function under a high-speed rate (over 200 Gb/s) need to have more optical power ability to overcome the power losses which is a reason for using a larger RF line connected to a Mach-Zehnder modulator for obtaining high data bitrate communication. One option to solve this problem is to use a complex laser with a power of over 100 milliwatts. However, this option can be complicated for a photonic chip circuit due to the high cost and nonlinear effects, which can increase the system noise.

View Article and Find Full Text PDF

Back reflection losses are a key problem that limits the performances of optical communication systems that work on wavelength division multiplexing (WDM) technology based on silicon (Si) Multimode Interference (MMI) waveguides. In order to overcome this problem, we propose a novel design for a 1 × 4 optical demultiplexer based on the MMI in silicon nitride (SiN) buried waveguide structure that operates at the C-band spectrum. The simulation results show that the proposed device can transmit four channels with a 10 nm spacing between them that work in the C-band with a low power loss range of 1.

View Article and Find Full Text PDF

One of the most common techniques for increasing data bitrate using the telecommunication system is to use dense wavelength division multiplexing (DWDM). However, the implementation of DWDM with more channels requires additional waveguide coupler devices and greater energy consumption, which can limit the system performances. To solve these issues, we propose a new approach for designing the demultiplexer using angled multimode interference (AMMI) in gallium nitride (GaN)-silica (SiO) slot waveguide structures.

View Article and Find Full Text PDF

A four green transverse magnetic (TM)/red transverse electric (TE) light wavelength demultiplexer device, based on multi slot-waveguide (SW) structures is demonstrated. The device aims to demultiplex wavelengths in the green/red light range with wavelengths of 530, 540, 550, and 560 nm; 630, 640, 650, and 660 nm. This means that the device functions as a 1 × 4 demultiplexer for each polarization mode (TE/TM).

View Article and Find Full Text PDF

The rapid growth of applications that rely on artificial neural network (ANN) concepts gives rise to a staggering increase in the demand for hardware implementations of neural networks. New types of hardware that can support the requirements of high-speed associative computing while maintaining low power consumption are sought, and optical artificial neural networks fit the task well. Inherently, optical artificial neural networks can be faster, support larger bandwidth, and produce less heat than their electronic counterparts.

View Article and Find Full Text PDF

A novel eight-channel demux device based on multicore photonic crystal fiber (PCF) structures that operate in the C-band range (1530⁻1565 nm) has been demonstrated. The PCF demux design is based on replacing some air-hole areas with lithium niobate and silicon nitride materials over the PCF axis alongside with the appropriate optimizations of the PCF structure. The beam propagation method (BPM) combined with Matlab codes was used to model the demux device and optimize the geometrical parameters of the PCF structure.

View Article and Find Full Text PDF

Currently available cancer therapies can cause damage to healthy tissue. We developed a unique method for specific mechanical lysis of cancer cells using superparamagnetic iron oxide nanoparticle rotation under a weak alternating magnetic field. Iron oxide core nanoparticles were coated with cetuximab, an anti-epidermal growth factor receptor antibody, for specific tumor targeting.

View Article and Find Full Text PDF

We propose a novel 8-channel wavelength multimode interference (MMI) demultiplexer in slot waveguide structures that operate at 1530 nm, 1535 nm, 1540 nm, 1545 nm, 1550 nm, 1555 nm, 1560 nm, and 1565 nm. Gallium nitride (GaN) surrounded by silicon (Si) was found to be a suitable material for the slot-waveguide structures. The proposed device was designed by seven 1 × 2 MMI couplers, fourteen S-bands, and one input taper.

View Article and Find Full Text PDF

In this article we suggest a new concept for cell destruction based upon manipulating magnetic nanoparticles (MNPs) by applying external, low frequency alternating magnetic field (AMF) that oscillates the particles, together with focused laser illumination. Assessment of temperature profiles in a head and neck squamous cell carcinoma sample showed that cells with MNPs, treated with AMF (3 Hz, 300 mW) and laser irradiation (30 mW), reached 42°C after 4.5 min, as opposed to cells treated with laser but without AMF.

View Article and Find Full Text PDF

Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks.

View Article and Find Full Text PDF

In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM).

View Article and Find Full Text PDF

We investigate the influence of spatial coherence on damage occurrence in highly multimode optical fibers using ultraviolet (UV) nanosecond pulses, with the aim of delivering high fluence in the UV. In some cases, the optical damage is initiated below the fiber facet damage threshold and takes place along the propagation path; such damage is believed to be caused by local constructive interference, creating "hot spots." In order to reduce the degree of spatial coherence, we used a large-diameter core (1.

View Article and Find Full Text PDF

By employing large hollow-core Kagome fiber in a double-clad configuration, the performance of a potentially rubidium vapor-based fiber laser is explored. The absorbed power and laser efficiency versus pump power are calculated utilizing a simple laser model. Our results show that a Kagome-based high-power fiber laser is feasible provided that the value of the collisional fine-structure mixing rate will be elevated by increasing the ambient temperature or by increasing the helium pressure.

View Article and Find Full Text PDF