Rice is more vulnerable to drought than maize, wheat, and sorghum because its water requirements remain high throughout the rice life cycle. The effects of drought vary depending on the timing, intensity, and duration of the events, as well as on the rice genotype and developmental stage. It can affect all levels of organization, from genes to the cells, tissues, and/or organs.
View Article and Find Full Text PDFIn silico chromosome painting is a technique by which contributions of distinct genetic groups are represented along chromosomes of hybrid individuals. This type of analysis is used to study the mechanisms by which these individuals were formed. Such techniques are well adapted to identify genetic groups contributing to these individuals as well as hybridization events.
View Article and Find Full Text PDFVanilla planifolia, the species cultivated to produce one of the world's most popular flavors, is highly prone to partial genome endoreplication, which leads to highly unbalanced DNA content in cells. We report here the first molecular evidence of partial endoreplication at the chromosome scale by the assembly and annotation of an accurate haplotype-phased genome of V. planifolia.
View Article and Find Full Text PDFBackground: Ensete glaucum (2n = 2x = 18) is a giant herbaceous monocotyledonous plant in the small Musaceae family along with banana (Musa). A high-quality reference genome sequence assembly of E. glaucum is a resource for functional and evolutionary studies of Ensete, Musaceae, and the Zingiberales.
View Article and Find Full Text PDFOryza sativa (rice) plays an essential food security role for more than half of the world's population. Obtaining crops with high levels of disease resistance is a major challenge for breeders, especially today, given the urgent need for agriculture to be more sustainable. Plant resistance genes are mainly encoded by three large leucine-rich repeat (LRR)-containing receptor (LRR-CR) families: the LRR-receptor-like kinase (LRR-RLK), LRR-receptor-like protein (LRR-RLP) and nucleotide-binding LRR receptor (NLR).
View Article and Find Full Text PDFBackground And Aims: Modern sugarcane cultivars (Saccharum spp.) are high polyploids, aneuploids (2n = ~12x = ~120) derived from interspecific hybridizations between the domesticated sweet species Saccharum officinarum and the wild species S. spontaneum.
View Article and Find Full Text PDFAmong legumes (Fabaceae) capable of nitrogen-fixing nodulation, several Aeschynomene spp. use a unique symbiotic process that is independent of Nod factors and infection threads. They are also distinctive in developing root and stem nodules with photosynthetic bradyrhizobia.
View Article and Find Full Text PDFComparative genomics is the analysis of genomic relationships among different species and serves as a significant base for evolutionary and functional genomic studies. GreenPhylDB (https://www.greenphyl.
View Article and Find Full Text PDFThe natural rubber biosynthetic pathway is well described in , although the final stages of rubber elongation are still poorly understood. Small Rubber Particle Proteins and Rubber Elongation Factors (SRPPs and REFs) are proteins with major function in rubber particle formation and stabilization. Their corresponding genes are clustered on a scaffold1222 of the reference genomic sequence of the genome.
View Article and Find Full Text PDFBackground: Small RNAs modulate plant gene expression at both the transcriptional and post-transcriptional level, mostly through the induction of either targeted DNA methylation or transcript cleavage, respectively. Small RNA networks are involved in specific plant developmental processes, in signaling pathways triggered by various abiotic stresses and in interactions between the plant and viral and non-viral pathogens. They are also involved in silencing maintenance of transposable elements and endogenous viral elements.
View Article and Find Full Text PDFBackground: Rice molecular genetics, breeding, genetic diversity, and allied research (such as rice-pathogen interaction) have adopted sequencing technologies and high-density genotyping platforms for genome variation analysis and gene discovery. Germplasm collections representing rice diversity, improved varieties, and elite breeding materials are accessible through rice gene banks for use in research and breeding, with many having genome sequences and high-density genotype data available. Combining phenotypic and genotypic information on these accessions enables genome-wide association analysis, which is driving quantitative trait loci discovery and molecular marker development.
View Article and Find Full Text PDFModern rice cultivars are adapted to a range of environmental conditions and human preferences. At the root of this diversity is a marked genetic structure, owing to multiple foundation events. Admixture and recurrent introgression from wild sources have played upon this base to produce the myriad adaptations existing today.
View Article and Find Full Text PDFImproved plant varieties are important in our attempts to face the challenges of a growing human population and limited planet resources. Plant breeding relies on meiotic crossovers to combine favourable alleles into elite varieties. However, meiotic crossovers are relatively rare, typically one to three per chromosome, limiting the efficiency of the breeding process and related activities such as genetic mapping.
View Article and Find Full Text PDFEdible bananas result from interspecific hybridization between Musa acuminata and Musa balbisiana, as well as among subspecies in M. acuminata. Four particular M.
View Article and Find Full Text PDFSugarcane (Saccharum spp.) is a major crop for sugar and bioenergy production. Its highly polyploid, aneuploid, heterozygous, and interspecific genome poses major challenges for producing a reference sequence.
View Article and Find Full Text PDFgenes represent a large and complex gene family in plants, mainly involved in development and stress responses. These receptors are composed of an LRR-containing extracellular domain (ECD), a transmembrane domain (TM) and an intracellular kinase domain (KD). To provide new perspectives on functional analyses of these genes in model and non-model plant species, we performed a phylogenetic analysis on 8,360 LRR-RLK receptors in 31 angiosperm genomes (8 monocots and 23 dicots).
View Article and Find Full Text PDFIntroduction of clonal reproduction through seeds (apomixis) in crops has the potential to revolutionize agriculture by allowing self-propagation of any elite variety, in particular F1 hybrids. In the sexual model plant Arabidopsis thaliana synthetic clonal reproduction through seeds can be artificially implemented by (i) combining three mutations to turn meiosis into mitosis (MiMe) and (ii) crossing the obtained clonal gametes with a line expressing modified CENH3 and whose genome is eliminated in the zygote. Here we show that additional combinations of mutations can turn Arabidopsis meiosis into mitosis and that a combination of three mutations in rice (Oryza sativa) efficiently turns meiosis into mitosis, leading to the production of male and female clonal diploid gametes in this major crop.
View Article and Find Full Text PDFBackground: Recent advances in genomics indicate functional significance of a majority of genome sequences and their long range interactions. As a detailed examination of genome organization and function requires very high quality genome sequence, the objective of this study was to improve reference genome assembly of banana (Musa acuminata).
Results: We have developed a modular bioinformatics pipeline to improve genome sequence assemblies, which can handle various types of data.
Gene duplications are an important factor in plant evolution, and lineage-specific expanded (LSE) genes are of particular interest. Receptor-like kinases expanded massively in land plants, and leucine-rich repeat receptor-like kinases (LRR-RLK) constitute the largest receptor-like kinases family. Based on the phylogeny of 7,554 LRR-RLK genes from 31 fully sequenced flowering plant genomes, the complex evolutionary dynamics of this family was characterized in depth.
View Article and Find Full Text PDFPlants are constantly exposed to a variety of biotic and abiotic stresses that reduce their fitness and performance. At the molecular level, the perception of extracellular stimuli and the subsequent activation of defense responses require a complex interplay of signaling cascades, in which protein phosphorylation plays a central role. Several studies have shown that some members of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) family are involved in stress and developmental pathways.
View Article and Find Full Text PDF