We describe the design and performance of a magnetic bottle electron spectrometer (MBES) for high-energy electron spectroscopy. Our design features a 2 m long electron drift tube and electrostatic retardation lens, achieving sub-electronvolt (eV) electron kinetic energy resolution for high energy (several hundred eV) electrons with a close to 4π collection solid angle. A segmented anode electron detector enables the simultaneous collection of photoelectron spectra in high resolution and high collection efficiency modes.
View Article and Find Full Text PDFElectrochemical reduction of 2-allyl-substituted nitroarenes using a simple, undivided electrochemical cell with non-precious electrodes to generate nitroarene radical anions was developed. The nitroarene radical anion intermediates participate in 1,5-hydrogen atom transfer reactions to construct quinoline N-oxides bearing aryl-, heteroaryl-, alkenyl-, benzyl-, sulfonyl-, or carboxyl groups.
View Article and Find Full Text PDFWe report the measurement of impulsive stimulated x-ray Raman scattering in neutral liquid water. An attosecond pulse drives the excitations of an electronic wavepacket in water molecules. The process comprises two steps: a transition to core-excited states near the oxygen atoms accompanied by transition to valence-excited states.
View Article and Find Full Text PDFTherapeutic peptides that are connected by disulfide bonds are often difficult to analyze by traditional tandem mass spectrometry without chemical modification. Using fragment correlation mass spectrometry, we analyzed 56 pairs of fragment ions generated from an equimolar (10 μM) mixture of three cyclic peptides, achieving sequence coverage of 86%, 100%, and 75% for octreotide, desmopressin, and the structural analogue of desmopressin, respectively. In all detected fragment ion pairs, only 20% of the fragment ions are terminal ions, with most of the measured ions only detected by fragment correlation mass spectrometry.
View Article and Find Full Text PDFThe photoelectric effect is not truly instantaneous but exhibits attosecond delays that can reveal complex molecular dynamics. Sub-femtosecond-duration light pulses provide the requisite tools to resolve the dynamics of photoionization. Accordingly, the past decade has produced a large volume of work on photoionization delays following single-photon absorption of an extreme ultraviolet photon.
View Article and Find Full Text PDFFragment correlation mass spectrometry correlates ion pairs generated from the same fragmentation pathway, achieved by covariance mapping of tandem mass spectra generated with an unmodified linear ion trap without preseparation. We enable the identification of different precursors at different charge states in a complex mixture from a large isolation window, empowering an analytical approach for data-independent acquisition. The method resolves and matches isobaric fragments, internal ions, and disulfide bond fragments.
View Article and Find Full Text PDFWe present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation.
View Article and Find Full Text PDFAn I(III)-catalyzed oxidative cyclization reaction using selectfluor as the oxidant was developed that converts -substituted anilines to benzimidazoles. The mild reaction requires as little as 0.5 mol % of iodobenzene, and its scope is broad: electron-withdrawing or electron-releasing groups on the aniline portion are tolerated, and cyclic or acyclic -alkylamines are permitted as -substituents.
View Article and Find Full Text PDFX-ray free-electron lasers are sources of coherent, high-intensity X-rays with numerous applications in ultra-fast measurements and dynamic structural imaging. Due to the stochastic nature of the self-amplified spontaneous emission process and the difficulty in controlling injection of electrons, output pulses exhibit significant noise and limited temporal coherence. Standard measurement techniques used for characterizing two-coloured X-ray pulses are challenging, as they are either invasive or diagnostically expensive.
View Article and Find Full Text PDFAn intramolecular iron-catalyzed nitroso ene reaction was developed to afford six- or seven-membered -heterocycles from nitroarenes using an earth abundant iron catalyst and phenylsilane as the terminal reductant. The reaction can be triggered using as little as 3 mol % of iron(II) acetate and 3 mol % of 4,7-dimethoxyphenanthroline as the ligand. The scope of the reaction is broad tolerating a range of electron-releasing or electron-withdrawing substituents on the nitroarene, and the -substituent can be modified to diastereoselectively construct benzoxazines, dihydrobenzothiazines, tetrahydroquinolines, tetrahydroquinoxalines, or tetrahydrobenzooxazepines.
View Article and Find Full Text PDFThe photon spectrum from free-electron laser (FEL) light sources offers valuable information in time-resolved experiments and machine optimization in the spectral and temporal domains. We have developed a compact single-shot photon spectrometer to diagnose soft X-ray spectra. The spectrometer consists of an array of off-axis Fresnel zone plates (FZP) that act as transmission-imaging gratings, a Ce:YAG scintillator, and a microscope objective to image the scintillation target onto a two-dimensional imaging detector.
View Article and Find Full Text PDFThis study examined consumers' consumption, motivations, and concerns regarding meat and meat alternatives by means of an online survey of 1061 New Zealand consumers and review of literature. Outcomes of the survey indicate New Zealanders are overwhelmingly omnivorous (93%), regard taste as the most important factor in their meat purchasing decision followed by price and freshness and consider environmental impact and social responsibility of less importance. Those surveyed indicated willingness to pay 17-24% more for food safety and sustainability related meat attributes.
View Article and Find Full Text PDFCombinatorial post-translational modifications (PTMs), such as those forming the so-called "histone code", have been linked to cell differentiation, embryonic development, cellular reprogramming, aging, cancers, neurodegenerative disorders, . Nevertheless, a reliable mass spectral analysis of the combinatorial isomers represents a considerable challenge. The difficulty stems from the incompleteness of information that could be generated by the standard MS to differentiate cofragmented isomeric sequences in their naturally occurring mixtures based on the fragment mass-to-charge ratio and relative abundance information only.
View Article and Find Full Text PDFThe development of an efficient process that produces bioactive medium-sized N-heterocyclic scaffolds from 2-substituted anilines using either iodosobenzene or (bis(trifluoroacetoxy)iodo)-benzene is reported. The tether between the sulfonamide and the aryl group can be varied to access dihydroacridine-, dibenzazepine-, or dibenzazocine scaffolds. While substitution on the aniline portion is limited to electron-neutral- or electron-poor groups, a broader range of functional groups are tolerated on the ortho-aryl substituent and site selective C-NAr bond formation can be achieved.
View Article and Find Full Text PDFWe present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated.
View Article and Find Full Text PDFThe newly constructed time-resolved atomic, molecular and optical science instrument (TMO) is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per-pulse energy as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators power a soft X-ray free-electron laser with the new variable-gap undulator section. With this flexible light source, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line.
View Article and Find Full Text PDFRecent advances in the development of reductive reactions of nitroarenes using organomagnesium-, organozinc-, and single electron transfer reagents is discussed within this review. The review is divided into the following sections: IntroductionOrganomagnesium-mediated reductive reactionsOrganozinc- and zinc-mediated reductive reactionsIodine-catalyzed redox cyclizationsTitanium(III)-mediated reductive cyclizationsSulfur-mediated reductive reactionsAlkoxide-mediated reductive reactions4,4'-Bipyridine-mediated reductive reactionsVisible light-driven reductive amination reactionsElectrochemical reductive reactionsConclusion.
View Article and Find Full Text PDFThe development and study of a simple copper-catalyzed reaction of nitroarenes with aryl boronic acids to form diarylamines that uses phenyl silane as the stoichiometric terminal reductant is described. This cross-coupling reaction requires as little as 2 mol % of CuX and 4 mol% of diphosphine for success and tolerates a broad range of functional groups on either the nitroarene or the aryl boronic acid with to afford the amine in good yield. Mechanistic investigations established that the cross-coupling reaction proceeds via a nitrosoarene intermediate and that copper is required to catalyze both the deoxygenation of the nitroarene to afford the nitrosoarene and C-NAr bond formation of the nitrosoarene with the aryl boronic acid.
View Article and Find Full Text PDFIn quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide.
View Article and Find Full Text PDFAim: To evaluate aspects of cognition impacted by individuals with and without normal tension glaucoma.
Methods: Fifty normal tension glaucoma (NTG) and 50 control patients ≥50y of age were recruited from the UCSF Department of Ophthalmology. Demographic data and glaucoma parameters were extracted from electronic medical records for both groups.
The development of the first intermolecular Rh(II)-catalyzed aziridination of olefins using anilines as nonactivated N atom precursors and an iodine(III) reagent as the stoichiometric oxidant is reported. This reaction requires the transfer of an -aryl nitrene fragment from the iminoiodinane intermediate to a Rh(II) carboxylate catalyst; in the absence of a catalyst only diaryldiazene formation was observed. This -aryl aziridination is general and can be successfully realized by using as little as 1 equiv of the olefin.
View Article and Find Full Text PDFWe present a protein database search engine for the automatic identification of peptide and protein sequences using the recently introduced method of two-dimensional partial covariance mass spectrometry (2D-PC-MS). Because the 2D-PC-MS measurement reveals correlations between fragments stemming from the same or consecutive decomposition processes, the first-of-its-kind 2D-PC-MS search engine is based entirely on the direct matching of the pairs of theoretical and the experimentally detected correlating fragments, rather than of individual fragment signals or their series. We demonstrate that the high structural specificity afforded by 2D-PC-MS fragment correlations enables our search engine to reliably identify the correct peptide sequence, even from a spectrum with a large proportion of contaminant signals.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2021
The design of an angular array of electron time-of-flight (eToF) spectrometers is reported, intended for non-invasive spectral, temporal, and polarization characterization of single shots of high-repetition rate, quasi-continuous, short-wavelength free-electron lasers (FELs) such as the LCLS II at SLAC. This array also enables angle-resolved, high-resolution eToF spectroscopy to address a variety of scientific questions on ultrafast and nonlinear light-matter interactions at FELs. The presented device is specifically designed for the time-resolved atomic, molecular and optical science endstation (TMO) at LCLS II.
View Article and Find Full Text PDF