Publications by authors named "Driton Vllasaliu"

Human milk extracellular vesicles (EVs) are crucial mother-to-baby messengers that transfer biological signals. These EVs are reported to survive digestion and transport across the intestine. The mechanisms of interaction between human milk EVs and the intestinal mucosa, including epithelial uptake remain unclear.

View Article and Find Full Text PDF

Understanding the internalization of nanosized particles by mucosal epithelial cells is essential in a number of areas including viral entry at mucosal surfaces, nanoplastic pollution, as well as design and development of nanotechnology-type medicines. Here, we report our comparative study on pathways of cellular internalization in epithelial Caco-2 cells cultured in vitro as either a polarized, differentiated cell layer or as nonpolarized, nondifferentiated cells. The study reveals a number of differences in the extent that endocytic processes are used by cells, depending on their differentiation status and the nature of applied nanoparticles.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is one of the most common reasons for acute liver failure and a major reason for the withdrawal of medications from the market. There is a growing need for advanced in vitro liver models that can effectively recapitulate hepatic function, offering a robust platform for preclinical drug screening applications. Here, we explore the potential of self-assembling liver spheroids in the presence of electrospun and cryomilled poly(caprolactone) (PCL) nanoscaffolds for use as a new preclinical drug screening tool.

View Article and Find Full Text PDF

In vitro models that mimic the pathophysiology in vivo are important tools to study mechanisms of disease and assess the pharmacology and toxicity of drugs. In this work, we report the development of a novel model of intestinal inflammation. This model is based on the co-culture of intestinal epithelial Caco-2 cells and murine J774A.

View Article and Find Full Text PDF
Article Synopsis
  • * This study explored the use of poloxamer 401 polymersomes as a potential oral delivery system for antibodies, specifically testing their efficacy in improving intestinal permeation and reducing inflammation.
  • * Results showed that polymersome-encapsulated IgG enhanced transport across intestinal cells significantly and reduced levels of proinflammatory cytokines, indicating the potential for oral biopharmaceutical administration to treat conditions like inflammatory bowel disease.
View Article and Find Full Text PDF

Background: Oral delivery remains unattainable for nucleic acid therapies. Many nanoparticle-based drug delivery systems have been investigated for this, but most suffer from poor gut stability, poor mucus diffusion and/or inefficient epithelial uptake. Extracellular vesicles from bovine milk (mEVs) possess desirable characteristics for oral delivery of nucleic acid therapies since they both survive digestion and traverse the intestinal mucosa.

View Article and Find Full Text PDF

In the context of increased interest in permeability enhancement technologies to achieve mucosal delivery of drugs and biologics, we report our study on effects of the amphiphilic surfactant at cell membrane and cell population levels. Our results show that modulation in membrane order and fluidity initially occurs on insertion of individual surfactant molecules into the outer leaflet of membrane lipid bilayer; a process occurring at concentrations below surfactant's critical micellar concentration. The surfactant insertion, and consequent increase in membrane fluidity, are observed to be spatially heterogenous, i.

View Article and Find Full Text PDF

Exosomes are membrane-bound extracellular nanovesicles secreted by most cells and found in multiple sources, including bodily fluids, plants, fruit, and bovine milk. They play an important role as mediators of intercellular communication, having a distinct ability to carry small molecules, proteins, and nucleic acids to recipient cells over large distances. Moreover, competency in crossing usually poorly permeable biological barriers has led to their promising use in diagnostics and in therapeutics, either as therapeutic entities on their own or as drug delivery vehicles, with superior stability, biocompatibility, circulation time and target specificity in comparison to conventional drug delivery systems.

View Article and Find Full Text PDF

Non-invasive drug delivery generally refers to painless drug administration methods involving drug delivery across the biological barriers of the mucosal surfaces or the skin [...

View Article and Find Full Text PDF

In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability.

View Article and Find Full Text PDF

This study investigated the application of a temperature-responsive methylcellulose-hyaluronic acid (MC-HA) hydrogel to support 3D cell growth . Initial work focused on the preparation of hydrogels for 3D culture, followed by investigations of the biological compatibility of hydrogel components and optimization of the cell culture environment. Evaluation of viability and proliferation of HCT116 cells cultured in the MC-HA hydrogel was used to adjust the blend composition to design a hydrogel with optimal properties to support cell growth.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic and progressive disorder with destructive inflammation in the gastrointestinal tract (GIT). Biologics have changed the management of IBD, but have serious limitations, which is associated with their systemic administration via injection. Oral administration is the most accepted route of drug administration.

View Article and Find Full Text PDF

Degranulation of mast cells and basophils occurs after the cross-linking of FcεRI receptor-bound IgE by multivalent allergens, resulting in the release of a range of de novo synthesized and preformed mediators of the allergic response. β-Hexosaminidase release is usually measured as a simple readout for degranulation. Furthermore, the rat basophilic leukemia (RBL)-2H3 cell line is commonly used for measuring degranulation, monitoring β-hexosaminidase release.

View Article and Find Full Text PDF

Hydroxypropylmethylcellulose (HPMC), also known as Hypromellose, is a traditional pharmaceutical excipient widely exploited in oral sustained drug release matrix systems. The choice of numerous viscosity grades and molecular weights available from different manufacturers provides a great variability in its physical-chemical properties and is a basis for its broad successful application in pharmaceutical research, development, and manufacturing. The excellent mucoadhesive properties of HPMC predetermine its use in oromucosal delivery systems including mucoadhesive tablets and films.

View Article and Find Full Text PDF

Ingestion is the preferred way for drug administration. However, many drugs have poor oral bioavailability, warranting the use of injections. Extracellular vesicles (EVs) from cow milk have shown potential utility in improving oral drug bioavailability.

View Article and Find Full Text PDF

Nanomedicine has shown potential in enabling oral administration of poorly absorbable drugs, such as biologics. As part of the process related to optimisation of the safety and efficacy of nanomedicines, it is imperative that the interaction of nanoparticles with the biological systems - including the gut - is fully characterised. In this article, we provide an overview of the major mechanisms by which nanoparticles may transform upon introduction in biological media.

View Article and Find Full Text PDF

Surfactant-like peptides are a class of amphiphilic macromolecules, which are able to self-assemble in water forming different supramolecular structures. Among them, octapeptides composed of six hydrophobic and two hydrophilic residues have attracted interest since they have a length similar to those of natural phospholipids. Supramolecular structures of different amphiphilic octapeptides have been widely reported, but no study has been performed aimed at investigating the effect of PEGylation on their self-assembling behaviour.

View Article and Find Full Text PDF

Quaternary ammonium amphiphiles are a class of compounds with a wide range of commercial and industrial uses. In the pharmaceutical field, the most common quaternary ammonium surfactant is benzalkonium chloride (BAC), which is employed as a preservative in several topical formulations for ocular, skin, or nasal application. Despite the broad antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as fungi and small enveloped viruses, safety concerns regarding its irritant and cytotoxic effect on epithelial cells still remain.

View Article and Find Full Text PDF

The aim of this study was to probe whether the transferrin (Tf) transport pathway can be exploited for intestinal delivery of nanoparticles. Tf was adsorbed on 100 nm model polystyrene nanoparticles (NP), followed by size characterisation of these systems. Cell uptake of Tf and Tf-adsorbed NP was investigated in intestinal epithelial Caco-2 cells cultured on multi-well plates and as differentiated polarised monolayers.

View Article and Find Full Text PDF

Biologics have changed the management of Inflammatory Bowel Disease (IBD), but there are concerns regarding unexpected systemic toxicity and loss of therapeutic response following administration by injection. Local delivery of biologics directly to the inflamed mucosa via rectal enema administration addresses the problems associated with systemic administration. Hydrogels are potentially useful delivery vehicles enabling rectal administration of biologics.

View Article and Find Full Text PDF

Full understanding of the barrier property of mucosal tissues is imperative for development of successful mucosal drug delivery strategies, particularly for biologics and nanomedicines. The contribution of the mucosal basement membrane (BM) to this barrier is currently not fully appreciated. This work examined the role of the BM as a barrier to intestinal absorption of model macromolecules (5 and 10 kDa dextrans) and 100 nm polystyrene nanoparticles.

View Article and Find Full Text PDF

Biologics have changed the management of inflammatory bowel disease (IBD), but there are concerns with unexpected systemic toxicity and loss of therapeutic response following administration by injection. Rectal administration of biologics offers potentially reduced therapy costs, as well as safer and more effective local delivery to inflammation sites. Hydrogels are potentially useful carriers of biologics for improved delivery to the inflamed intestinal mucosa.

View Article and Find Full Text PDF

Introduction: Research into oral delivery of biologics has a long and rich history but has not produced technologies used in the clinic. The area has evolved in terms of strategies to promote oral biologics delivery from early chemical absorption enhancers to nanomedicine to devices. Continued activity in this area is justifiable considering the remarkable proliferation of biologics.

View Article and Find Full Text PDF