Publications by authors named "Driss Talibi"

Completion of the fission yeast genome sequence has opened up possibilities for post-genomic approaches. We have constructed a DNA microarray for genome-wide gene expression analysis in fission yeast. The microarray contains DNA fragments, PCR-amplified from a genomic DNA template, that represent > 99% of the 5000 or so annotated fission yeast genes, as well as a number of control sequences.

View Article and Find Full Text PDF

During the last years, the demand for custom-made cDNA chips/arrays as well as whole genome chips is increasing rapidly. The efficient selection of gene-specific primers/oligomers is of the utmost importance for the successful production of such chips. We developed GenomePRIDE, a highly flexible and scalable software for designing primers/oligomers for large-scale projects.

View Article and Find Full Text PDF

In plants, gamma-aminobutyrate (GABA), a non-protein amino acid, accumulates rapidly in response to a variety of abiotic stresses such as oxygen deficiency. Under normoxia, GABA is catabolized to succinic semialdehyde and then to succinate with the latter reaction being catalyzed by succinic semialdehyde dehydrogenase (SSADH). Complementation of an SSADH-deficient yeast mutant with an Arabidopsis cDNA library enabled the identification of a novel cDNA (designated as AtGH-BDH for Arabidopsis thaliana gamma-hydroxybutyrate dehydrogenase), which encodes a 289-amino acid polypeptide containing an NADP-binding domain.

View Article and Find Full Text PDF

Neisseria meningitidis colonizes the nasopharynx and, unlike commensal Neisseria species, is capable of entering the bloodstream, crossing the blood-brain barrier, and invading the meninges. The other pathogenic Neisseria species, Neisseria gonorrhoeae, generally causes an infection which is localized to the genitourinary tract. In order to investigate the genetic basis of this difference in disease profiles, we used a strategy of genomic comparison.

View Article and Find Full Text PDF

In budding yeast, PKC1 plays an essential role in cell wall integrity and cell proliferation through a bifurcated PKC1/mitogen-activated protein (MAP) kinase pathway. The evidence that KNR4 is a member of the PKC1 pathway and genetically interacts with BCK2, a gene involved together with Cln3-Cdc28 in the G1 to S transition phase of the cell cycle, was as follows. Both KNR4 and BCK2 were isolated as a dosage suppressor of a calcofluor white hypersensitive ( cwh43) mutant.

View Article and Find Full Text PDF