The objective of this study is to examine the preparation of activated carbon with a fibrous structure obtained from olive pomace through a chemical activation process using phosphoric acid (HPO) as the activating agent under air at a lower temperature. According to the findings, the most effective conditions to achieve high-performance activated carbon were 22 vol% of HPO, a 2-h chemical activation impregnation residence time at 50 °C, and a 500 °C pyrolysis temperature for 1 h. Structural analysis revealed that activated carbons possess highly developed textural and structural properties, resulting in an iodine value of 923 mg/g and a specific surface of 1400 m/g.
View Article and Find Full Text PDFA simple and versatile preparation of Zn(II)-poly(carboxylates) reticulated binders by the addition of Zn(II) precursors (ZnSO, ZnO, or Zn(NO)) into a preoptimized poly(carboxylic acids) binder solution is proposed. These binders lead systematically to a significantly improved electrochemical performance when used for the formulation of silicon-based negative electrodes. The formation of carboxylate-Zn(II) coordination bonds formation is investigated by rheology and FTIR and NMR spectroscopies.
View Article and Find Full Text PDFThe latest advances in the stabilization of Li/Na metal battery and Li-ion battery cycling have highlighted the importance of electrode/electrolyte interface [solid electrolyte interphase (SEI)] and its direct link to cycling behavior. To understand the structure and properties of the SEI, we used combined experimental and computational studies to unveil how the ionic liquid (IL) cation nature and salt concentration impact the silicon/IL electrolyte interfacial structure and the formed SEI. The nature of the IL cation is found to be important to control the electrolyte reductive decomposition that influences the SEI composition and properties and the reversibility of the Li-Si alloying process.
View Article and Find Full Text PDFThe role of the physicochemical properties of the water-soluble polyacrylic acid (PAA) binder in the electrochemical performance of highly loaded silicon/graphite 50/50 wt % negative electrodes has been examined as a function of the neutralization degree in PAAHLi at the initial cycle in an electrolyte not containing ethylene carbonate. Electrode processing in the acidic PAAH binder at pH 2.5 leads to a deep copper corrosion, resulting in a significant electrode cohesion and adhesion to the current collector surface, but the strong binder rigidity may explain the big cracks occurring on the electrode surface at the first cycle.
View Article and Find Full Text PDFAtomic force microscopy (AFM) is a widely used imaging technique in material sciences. After becoming a standard surface-imaging tool, AFM has been proven to be useful in addressing several biological issues such as the characterization of cell organelles, quantification of DNA-protein interactions, cell adhesion forces, and electromechanical properties of living cells. AFM technique has undergone many successful improvements since its invention, including fluidic force microscopy (FluidFM), which combines conventional AFM with microchanneled cantilevers for local liquid dispensing.
View Article and Find Full Text PDFIon channels are transmembrane proteins that allow the passage of ions according to the direction of their electrochemical gradients. Mutations in more than 30 genes encoding ion channels have been associated with an increasingly wide range of inherited cardiac arrhythmias. In this line, ion channels become one of the most important molecular targets for several classes of drugs, including antiarrhythmics.
View Article and Find Full Text PDFFluoropolymers have been reduced locally by the radical anion of a redox mediator electrogenerated at a microelectrode operating in the configuration of a scanning electrochemical microscope. Approach curves with different redox mediators were used to investigate the reduction mechanism of the fluoropolymer. Different factors are discussed, such as the monomer reduction mechanism, the kinetic control by the surface modification growth, and the conductivity of the modified surface.
View Article and Find Full Text PDF