We obtain the general conditions for the emergence of odd-frequency superconducting pairing in a two-dimensional (2D) electronic system proximity coupled to a superconductor, making minimal assumptions about both the 2D system and the superconductor. Using our general results we show that a simple heterostructure formed by a monolayer of a group VI transition metal dichalcogenide, such as molybdenum disulfide, and an s-wave superconductor with Rashba spin-orbit coupling exhibits odd-frequency superconducting pairing. Our results allow the identification of a new class of systems among van der Waals heterostructures in which odd-frequency superconductivity should be present.
View Article and Find Full Text PDFTopological Josephson junctions carry 4π-periodic bound states. A finite bias applied to the junction limits the lifetime of the bound state by dynamically coupling it to the continuum. Another characteristic time scale, the phase adjustment time, is determined by the resistance of the circuit "seen" by the junction.
View Article and Find Full Text PDFWe study Josephson junctions between superconductors connected through the helical edge states of a two-dimensional topological insulator in the presence of a magnetic barrier. As the equilibrium Andreev bound states of the junction are 4π periodic in the superconducting phase difference, it was speculated that, at finite dc bias voltage, the junction exhibits a fractional Josephson effect with half the Josephson frequency. Using the scattering matrix formalism, we show that his effect is absent in the average current.
View Article and Find Full Text PDF