Publications by authors named "Drinkwater B"

The utilization of acoustic fields offers a contactless approach for microparticle manipulation in a miniaturized system, and plays a significant role in medicine, biology, chemistry, and engineering. Due to the acoustic radiation force arising from the scattering of the acoustic waves, small particles in the Rayleigh scattering range can be trapped, whilst their impact on the acoustic field is negligible. Manipulating larger particles in the Mie scattering regime is challenging due to the diverse scattering modes, which impacts the local acoustic field.

View Article and Find Full Text PDF
Article Synopsis
  • MightyLev is a new ultrasonic levitation device that effectively stabilizes materials with densities up to 11.3 g cm-3, making it ideal for advanced chemical and structural analysis.
  • The device can levitate metals and oxides at high temperatures exceeding 1500 K, especially when combined with mid-infrared laser heating.
  • Investigations into heating-related instabilities reveal that jets of hot air can affect sample stability; understanding these interactions will help improve acoustic levitation techniques for processing materials without containers.
View Article and Find Full Text PDF

This article explores what useful information can be retrieved from pipeline interiors using an air-coupled ultrasonic array. Experiments are performed using an array, custom array controller, and supporting electronics controlled by a Raspberry Pi 4, mounted on board a crawler robot. A 64-transducer 40-kHz array configuration is selected based on uniformity of imaging amplitude over the circumference of the pipe wall.

View Article and Find Full Text PDF

This paper addresses the effect of the excitation envelope on the generated nonlinear resonant signal (NRS) for collinear wave mixing of shear and longitudinal waves. The aim is to explore how the absolute material nonlinearity can be extracted accurately for any enveloped sinusoidal excitation signal. A finite difference time domain (FDTD) model was built to simulate the effect of input waveforms on the NRS.

View Article and Find Full Text PDF

Nonlinear ultrasonic techniques can be difficult and non-intuitive to understand due to the range of wave mixing combinations available between similar or different wave modes. To overcome this, a numerical model that uses a Finite Difference Time Domain (FDTD) scheme, without a staggered grid system, to solve the nonlinear elastic bulk wave equations in two dimensions is proposed in this paper, with the purpose of better understanding nonlinear ultrasonic techniques. Both material and geometrical nonlinearities are considered and a stress-type boundary condition is used to model the excitation.

View Article and Find Full Text PDF

The high throughput deposition of microscale objects with precise spatial arrangement represents a key step in microfabrication technology. This can be done by creating physical boundaries to guide the deposition process or using printing technologies; in both approaches, these microscale objects cannot be further modified after they are formed. The utilization of dynamic acoustic fields offers a novel approach to facilitate real-time reconfigurable miniaturized systems in a contactless manner, which can potentially be used in physics, chemistry, biology, as well as materials science.

View Article and Find Full Text PDF

Background: Focused ultrasound stimulation (FUS) has the potential to provide non-invasive neuromodulation of deep brain regions with unparalleled spatial precision. However, the cellular and molecular consequences of ultrasound stimulation on neurons remains poorly understood. We previously reported that ultrasound stimulation induces increases in neuronal excitability that persist for hours following stimulation in vitro.

View Article and Find Full Text PDF

This paper describes the use of impulse control of an acoustic field to create complex and precise particle patterns and then dynamically manipulate them. We first demonstrate that the motion of a particle in an acoustic field depends on the applied impulse and three distinct regimes can be identified. The high impulse regime is the well established mode where particles travel to the force minima of an applied continuous acoustic field.

View Article and Find Full Text PDF

Intracellular compartments are functional units that support the metabolism within living cells, through spatiotemporal regulation of chemical reactions and biological processes. Consequently, as a step forward in the bottom-up creation of artificial cells, building analogous intracellular architectures is essential for the expansion of cell-mimicking functionality. Herein, we report the development of a droplet laboratory platform to engineer complex emulsion-based, multicompartment artificial cells, using microfluidics and acoustic levitation.

View Article and Find Full Text PDF
Article Synopsis
  • The goal of tissue engineering is to create artificial tissues that closely mimic the structure and function of natural tissues, such as the deep zone of articular cartilage with its unique cell arrangement.
  • Recent advancements include using ultrasound standing waves to organize chondrocytes into precise arrays within hydrogels, maintaining this pattern for up to five weeks.
  • This innovative method could enhance our understanding of how cell organization affects tissue development, paving the way for the design of improved tissue grafts for cartilage repair.
View Article and Find Full Text PDF

In noise control applications, a perfect metasurface absorber would have the desirable traits of not only mitigating unwanted sound, but also being much thinner than the wavelengths of interest. Such deep-subwavelength performance is difficult to achieve technologically, yet moth wings, as natural metamaterials, offer functionality as efficient sound absorbers through the action of the numerous resonant scales that decorate their wing membrane. Here, we quantify the potential for moth wings to act as a sound-absorbing metasurface coating for acoustically reflective substrates.

View Article and Find Full Text PDF

This article explores the use of a 40-kHz air-coupled ultrasonic array in detecting and imaging blockages and defects in buried pipes with 17-26 wavelengths in diameter at short ranges (approximately 20-60 wavelengths). In particular, the imaging performance of arrays with different numbers of transducers is quantified and compared to establish how many are required for adequate performance. Even low numbers of transducers (<25) are capable of producing -6-dB contours of blockages that match reference images to within 95% by restricting the aperture to maintain element density.

View Article and Find Full Text PDF

Continuous non-destructive monitoring of large-scale structures is extremely challenging with traditional manual inspections. In this paper, we explore possible strategies that a collection of inspection robots could adopt to address this challenge. We envision the continuous inspection of a plate performed by multiple robots or a single robot that combines measurements from multiple locations.

View Article and Find Full Text PDF

Accurate defect characterization is desirable in the ultrasonic nondestructive evaluation as it can provide quantitative information about the defect type and geometry. For defect characterization using ultrasonic arrays, high-resolution images can provide the size and type information if a defect is relatively large. However, the performance of image-based characterization becomes poor for small defects that are comparable to the wavelength.

View Article and Find Full Text PDF

Background: Transcranial ultrasound stimulation can acutely modulate brain activity, but the lasting effects on neurons are unknown.

Objective: To assess the excitability profile of neurons in the hours following transient ultrasound stimulation.

Methods: Primary rat cortical neurons were stimulated with a 40 s, 200 kHz pulsed ultrasound stimulation or sham-stimulation.

View Article and Find Full Text PDF

Metamaterials assemble multiple subwavelength elements to create structures with extraordinary physical properties (1-4). Optical metamaterials are rare in nature and no natural acoustic metamaterials are known. Here, we reveal that the intricate scale layer on moth wings forms a metamaterial ultrasound absorber (peak absorption = 72% of sound intensity at 78 kHz) that is 111 times thinner than the longest absorbed wavelength.

View Article and Find Full Text PDF

Ultrasonic array imaging algorithms have been widely developed and used for non-destructive evaluation (NDE) in the last two decades. In this paper two widely used time domain algorithms are compared with two emerging frequency domain algorithms in terms of imaging performance and computational speed. The time domain algorithms explored here are the total focusing method (TFM) and plane wave imaging (PWI) and the frequency domain algorithms are the wavenumber algorithm and Lu's frequency-wavenumber domain implementation of PWI.

View Article and Find Full Text PDF

Objective: Past studies have suggested a potential "J shaped" relationship between infrarenal aortic diameter and both cardiovascular disease (CVD) prevalence and all cause mortality. However, screening programmes have focused primarily on large (aneurysmal) aortas. In addition, aortic diameter is rarely adjusted for body size, which is particularly important for women.

View Article and Find Full Text PDF

An ultrasound-based platform is established to prepare homogenous arrays of giant unilamellar vesicles (GUVs) or red blood cell (RBCs), or hybrid assemblies of GUV/RBCs. Due to different responses to the modulation of the acoustic standing wave pressure field between the GUVs and RBCs, various types of protocell/natural cell hybrid assemblies are prepared with the ability to undergo reversible dynamic reconfigurations from vertical to horizontal alignments, or from 1D to 2D arrangements. A two-step enzymatic cascade reaction between transmitter glucose oxidase-containing GUVs and peroxidase-active receiver RBCs is used to implement chemical signal transduction in the different hybrid micro-arrays.

View Article and Find Full Text PDF

Many moths are endowed with ultrasound-sensitive ears that serve the detection and evasion of echolocating bats. Moths lacking such ears could still gain protection from bat biosonar by using stealth acoustic camouflage, absorbing sound waves rather than reflecting them back as echoes. The thorax of a moth is bulky and hence acoustically highly reflective.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a method to create micro-arrays of giant unilamellar lipid vesicles (GUVs) that have controlled shapes, sizes, and compositions using acoustic standing waves.
  • These GUV micro-arrays can be used for chemical signaling, allowing communication between GUV clusters and interactions with living cells or protocells.
  • This technique presents a novel way to fabricate GUVs, potentially advancing studies in protocell research and synthetic biology.
View Article and Find Full Text PDF

The design and assembly of artificial protocell consortia displaying dynamical behaviours and systems-based properties are emerging challenges in bottom-up synthetic biology. Cellular processes such as morphogenesis and differentiation rely in part on reaction-diffusion gradients, and the ability to mimic rudimentary aspects of these non-equilibrium processes in communities of artificial cells could provide a step to life-like systems capable of complex spatiotemporal transformations. Here we expose acoustically formed arrays of initially identical coacervate micro-droplets to uni-directional or counter-directional reaction-diffusion gradients of artificial morphogens to induce morphological differentiation and spatial patterning in single populations of model protocells.

View Article and Find Full Text PDF

We use an ultrasonic standing wave to simultaneously trap and deform thousands of soft lipid vesicles immersed in a liquid solution. In our device, acoustic radiation stresses comparable in magnitude to those generated in optical stretching devices are achieved over a spatial extent of more than ten acoustic wavelengths. We solve the acoustic scattering problem in the long-wavelength limit to obtain the radiation stress.

View Article and Find Full Text PDF

In the field of ultrasonic array imaging for non-destructive testing (NDT), material structural noise caused by grain scattering is one of the main sources of error when characterizing defects that are found in the polycrystalline materials. The existence of grains can also severely affect the detection performance of ultrasonic testing, making small defects indistinguishable from the grain indications due to ultrasonic attenuation and backscatter. This paper proposes a model in which the statistical distribution of the defect data is obtained from different realizations of the grain structure.

View Article and Find Full Text PDF