Publications by authors named "Drinkenburg W"

Article Synopsis
  • Sleep is crucial for removing neurotoxic substances like amyloid-β from the brain, and poor sleep can lead to neurotoxins building up, risking neuron death and increasing the chances of neurodegenerative diseases like Alzheimer's and Parkinson's.
  • There is a two-way relationship between sleep issues and neurodegeneration, indicating that sleep impairment may start affecting brain health long before symptoms show up.
  • The review discusses methods to enhance sleep's restorative functions through sensory, transcranial, pharmacological, and behavioral interventions aimed at boosting brain clearance and preventing cognitive decline.
View Article and Find Full Text PDF

The European Quality In Preclinical Data (EQIPD) consortium was born from the fact that publications report challenges with the robustness, rigor, and/or validity of research data, which may impact decisions about whether to proceed with further preclinical testing or to advance to clinical testing, as well as draw conclusions on the predictability of preclinical models. To address this, a consortium including multiple research laboratories from academia and industry participated in a series of electroencephalography (EEG) experiments in mice aimed to detect sources of variance and to gauge how protocol harmonisation and data analytics impact such variance. Ultimately, the goal of this first ever between-laboratory comparison of EEG recordings and analyses was to validate the principles that supposedly increase data quality, robustness, and comparability.

View Article and Find Full Text PDF

In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a heterogeneous neurodegenerative disease that belongs to the family of synucleiopathies, varying according to age, symptoms and progression. The hallmark of the disease is the accumulation of misfolded alpha-synuclein (α-Syn) protein in neuronal and non-neuronal brain cells. Over the past decades, the diagnosis and treatment of PD had a view centred on motoric endpoint and deficits in the nigrostriatal dopaminergic system, and consequently animal models of PD with predominantly motor behavior deficits have been used to study the disease.

View Article and Find Full Text PDF

Many psychiatric and neurological disorders present deficits in both the social and cognitive domain. In this perspectives article, we provide an overview and the potential of the existence of an extensive neurobiological substrate underlying the close relationship between these two domains. By mapping the rodent brain regions involved in the social and/or cognitive domain, we show that the vast majority of brain regions involved in the cognitive domain are also involved in the social domain.

View Article and Find Full Text PDF

The two main histopathological hallmarks that characterize Alzheimer's Disease are the presence of amyloid plaques and neurofibrillary tangles. One of the current approaches to studying the consequences of amyloid pathology relies on the usage of transgenic animal models that incorporate the mutant humanized form of the amyloid precursor protein (hAPP), with animal models progressively developing amyloid pathology as they age. However, these mice models generally overexpress the hAPP protein to facilitate the development of amyloid pathology, which has been suggested to elicit pathological and neuropathological changes unrelated to amyloid pathology.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is a neurodegenerative disease characterized by two main pathological hallmarks: amyloid plaques and intracellular tau neurofibrillary tangles. However, a majority of studies focus on the individual pathologies and seldom on the interaction between the two pathologies. Herein, we present the longitudinal neuropathological and neurophysiological effects of a combined amyloid-tau model by hippocampal seeding of human-derived tau pathology in the APP.

View Article and Find Full Text PDF

Synaptic plasticity is the key to synaptic health, and aberrant synaptic plasticity, which in turn impairs the functioning of large-scale brain networks, has been associated with neurodegenerative and psychiatric disorders. The best known and most studied form of activity-dependent synaptic plasticity remains long-term potentiation (LTP), which is controlled by glutamatergic N-methyl-d-aspartate) receptors (NMDAR) and considered to be a mechanism crucial for cellular learning and memory. Over the past two decades, discrepancies have arisen in the literature regarding the contribution of NMDAR subunit assemblies in the direction of NMDAR-dependent synaptic plasticity.

View Article and Find Full Text PDF

Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer's disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout.

View Article and Find Full Text PDF

Evidence links neuroinflammation to Alzheimer's disease (AD); however, its exact contribution to the onset and progression of the disease is poorly understood. Symptoms of AD can be seen as the tip of an iceberg, consisting of a neuropathological build-up in the brain of extracellular amyloid-β (Aβ) plaques and intraneuronal hyperphosphorylated aggregates of Tau (pTau), which are thought to stem from an imbalance between its production and clearance resulting in loss of synaptic health and dysfunctional cortical connectivity. The glymphatic drainage system, which is particularly active during sleep, plays a key role in the clearance of proteinopathies.

View Article and Find Full Text PDF

Recent evidence suggests that about 30%of patients with mild to moderate Alzheimer's disease (AD) without a known diagnosis of epilepsy may display epileptiform spikes during electroencephalographic (EEG) recordings. These abnormal discharges occur predominantly during sleep and may be associated with accelerated disease progression. Subclinical spikes may represent a relevant target for clinical drug interventions, and there is a clear unmet need for preclinical testing of novel disease modifying agents in suitable animal models.

View Article and Find Full Text PDF

The lack of translation from basic research into new medicines is a major challenge in CNS drug development. The need to use novel approaches relying on (i) patient clustering based on neurobiology irrespective to symptomatology and (ii) quantitative biomarkers focusing on evolutionarily preserved neurobiological systems allowing back-translation from clinical to nonclinical research has been highlighted. Here we sought to evaluate the mismatch negativity (MMN) response in schizophrenic (SZ) patients, Alzheimer's disease (AD) patients, and age-matched healthy controls.

View Article and Find Full Text PDF

Background/aims: Olfactory dysfunction can provide valuable insight into early pathophysiological processes of brain disorders. Olfactory processing of chemosensory and odour sensitivity relies on segregating salient odours from background odours cues. Odour-evoked fast oscillations in the olfactory bulb (OB) are hypothesized to be an important index of odour quality coding.

View Article and Find Full Text PDF

Broad issues associated with non-replicability have been described in experimental pharmacological and behavioral cognitive studies. Efforts to prevent biases that contribute to non-replicable scientific protocols and to improve experimental rigor for reproducibility are increasingly seen as a basic requirement for the integrity of scientific research. Synaptic plasticity, encompassing long-term potentiation (LTP), is believed to underlie mechanisms of learning and memory.

View Article and Find Full Text PDF

Objective: In this exploratory study, we tested whether electroencephalographic (EEG) rhythms may reflect the effects of a chronic administration (4 weeks) of an anti-amyloid β-site amyloid precursor protein (APP) cleaving enzyme 1 inhibitor (BACE-1; ER-901356; Eisai Co., Ltd., Tokyo, Japan) in TASTPM (double mutation in APP KM670/671NL and PSEN1 M146V) producing Alzheimer's disease (AD) amyloid neuropathology as compared to wild type (WT) mice.

View Article and Find Full Text PDF

Background: The European PharmaCog study (http://www.pharmacog.org) has reported a reduction in delta (1-6 Hz) electroencephalographic (EEG) power (density) during cage exploration (active condition) compared with quiet wakefulness (passive condition) in PDAPP mice (hAPP Indiana V717F mutation) modeling Alzheimer's disease (AD) amyloidosis and cognitive deficits.

View Article and Find Full Text PDF

The aging process eventually cause a breakdown in critical synaptic plasticity and connectivity leading to deficits in memory function. The olfactory bulb (OB) and the hippocampus, both regions of the brain considered critical for the processing of odors and spatial memory, are commonly affected by aging. Using an aged wild-type C57B/6 mouse model, we sought to define the effects of aging on hippocampal plasticity and the integrity of cortical circuits.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by neuronal loss and impaired synaptic transmission, ultimately leading to cognitive deficits. Early in the disease, the olfactory track seems most sensitive to tauopathy, while most plasticity studies focused on the hippocampal circuits. Functional network connectivity (FC) and long-term potentiation (LTP), considered as the plasticity substrate of learning and memory, were longitudinally assessed in mice of the P301S model of tauopathy following the course (time and location) of progressively neurodegenerative pathology (i.

View Article and Find Full Text PDF

Dysfunctional N-methyl-D-aspartate receptors (NMDARs) and cyclic adenosine monophosphate (cAMP) have been associated with deficits in synaptic plasticity and cognition found in neurodegenerative and neuropsychiatric disorders such as Alzheimer's disease (AD) and schizophrenia. Therapeutic approaches that indirectly enhance NMDAR function through increases in glycine and/or D-serine levels as well as inhibition of phosphodiesterases that reduces degradation of cAMP, are expected to enhance synaptic strength, connectivity and to potentially impact cognition processes. The present in vivo study investigated effects of subcutaneous administration of D-serine, the glycine transporter 1 (GlyT1) inhibitor SSR504734 and the PDE4 inhibitor rolipram, on network oscillations, connectivity and long-term potentiation (LTP) at the hippocampi circuits in Sprague-Dawley rats.

View Article and Find Full Text PDF

Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer's disease (AD), despite a surge in recent validated evidence. This position paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.

View Article and Find Full Text PDF

Multiple animal models have been created to gain insight into Alzheimer's disease (AD) pathology. Among the most commonly used models are transgenic mice overexpressing human amyloid precursor protein (APP) with mutations linked to familial AD, resulting in the formation of amyloid β plaques, one of the pathological hallmarks observed in AD patients. However, recent evidence suggests that the overexpression of APP by itself can confound some of the reported observations.

View Article and Find Full Text PDF

In 1999, the International Federation of Clinical Neurophysiology (IFCN) published "IFCN Guidelines for topographic and frequency analysis of EEGs and EPs" (Nuwer et al., 1999). Here a Workgroup of IFCN experts presents unanimous recommendations on the following procedures relevant for the topographic and frequency analysis of resting state EEGs (rsEEGs) in clinical research defined as neurophysiological experimental studies carried out in neurological and psychiatric patients: (1) recording of rsEEGs (environmental conditions and instructions to participants; montage of the EEG electrodes; recording settings); (2) digital storage of rsEEG and control data; (3) computerized visualization of rsEEGs and control data (identification of artifacts and neuropathological rsEEG waveforms); (4) extraction of "synchronization" features based on frequency analysis (band-pass filtering and computation of rsEEG amplitude/power density spectrum); (5) extraction of "connectivity" features based on frequency analysis (linear and nonlinear measures); (6) extraction of "topographic" features (topographic mapping; cortical source mapping; estimation of scalp current density and dura surface potential; cortical connectivity mapping), and (7) statistical analysis and neurophysiological interpretation of those rsEEG features.

View Article and Find Full Text PDF

Inconsistent findings between laboratories are hampering scientific progress and are of increasing public concern. Differences in laboratory environment is a known factor contributing to poor reproducibility of findings between research sites, and well-controlled multisite efforts are an important next step to identify the relevant factors needed to reduce variation in study outcome between laboratories. Through harmonization of apparatus, test protocol, and aligned and non-aligned environmental variables, the present study shows that behavioral pharmacological responses in Shank2 knockout (KO) rats, a model of synaptic dysfunction relevant to autism spectrum disorders, were highly replicable across three research centers.

View Article and Find Full Text PDF

Sleep seems essential to proper functioning of the prefrontal cortex (PFC). The role of different neurotransmitters has been studied, mainly the catecholamines and serotonin. Less attention has been paid to the amino acid transmitters and histamine.

View Article and Find Full Text PDF