Publications by authors named "Drewlo S"

Background: Preeclampsia is a hypertensive disorder of pregnancy characterized by chronic placental ischemia and suppression of proangiogenic proteins, causing oxidative stress, hypertension, and maternal systemic organ damage. The transcription factor, PPARγ (peroxisome proliferator-activated receptor-γ) promotes healthy trophoblast differentiation but is dysregulated in the preeclampsia placenta. Our study identifies the beneficial impact of Rosiglitazone-mediated PPARγ-activation in the stressed preeclampsia placenta.

View Article and Find Full Text PDF

Preeclampsia (PE) is one of the most common causes of maternal-fetal morbidity and mortality world-wide. While the underlying causes of PE remain elusive, aberrant trophoblast differentiation and function are thought to cause an imbalance of secreted angiogenic proteins resulting in systemic endothelial dysfunction and organ damage in the mother. The placental dysfunction is also characterized by a reduction of the transcription factor, peroxisome proliferator activated receptor γ (PPARγ) which normally promotes trophoblast differentiation and healthy placental function.

View Article and Find Full Text PDF

Irisin is a newly discovered exercise-mediated polypeptide hormone. Irisin levels increase during pregnancy however, women with preeclampsia (PE) have significantly lower levels of Irisin compared to women of healthy pregnancies. Even though many studies suggest a role of Irisin in pregnancy, its function in the human placenta is unclear.

View Article and Find Full Text PDF

Successful pregnancies rely on sufficient energy and nutrient supply, which require the mother to metabolically adapt to support fetal needs. The placenta has a critical role in this process, as this specialized organ produces hormones and peptides that regulate fetal and maternal metabolism. The ability for the mother to metabolically adapt to support the fetus depends on maternal prepregnancy health.

View Article and Find Full Text PDF

The NFκB protein family regulates numerous pathways within the cell-including inflammation, hypoxia, angiogenesis and oxidative stress-all of which are implicated in placental development. The placenta is a critical organ that develops during pregnancy that primarily functions to supply and transport the nutrients required for fetal growth and development. Abnormal placental development can be observed in numerous disorders during pregnancy, including fetal growth restriction, miscarriage, and preeclampsia (PE).

View Article and Find Full Text PDF

Irisin, an adipokine, regulates differentiation and phenotype in various cell types including myocytes, adipocytes, and osteoblasts. Circulating irisin concentration increases throughout human pregnancy. In pregnancy disorders such as preeclampsia and gestational diabetes mellitus, circulating irisin levels are reduced compared to healthy controls.

View Article and Find Full Text PDF

Prenatal testing for fetal genetic traits and risk of obstetrical complications is essential for maternal-fetal healthcare. The migration of extravillous trophoblast (EVT) cells from the placenta into the reproductive tract and accumulation in the cervix offers an exciting avenue for prenatal testing and monitoring placental function. These cells are obtained with a cervical cytobrush, a routine relatively safe clinical procedure during pregnancy, according to published studies and our own observations.

View Article and Find Full Text PDF

Increased inflammation and abnormal placentation are common features of a wide spectrum of pregnancy-related disorders such as intra uterine growth restriction, preeclampsia and preterm birth. The inflammatory response of the human placenta has been mostly investigated in relation to cytokine release, but the direct molecular consequences on trophoblast differentiation have not been investigated. This study measured the general effects of LPS on both extravillous and villous trophoblast physiology, and the involvement of the transcription factors PPARγ and NF-κB, specifically using 1 trimester explants and HTR-8/ SVneo cell line models.

View Article and Find Full Text PDF

Mouse Embryonic Stem Cells (mESCs) are unique in their self-renewal and pluripotency. Hypothetically, mESCs model gestational stress effects or stresses of in vitro fertilization/assisted reproductive technologies or drug/environmental exposures that endanger embryos. Testing mESCs stress responses should diminish and expedite in vivo embryo screening.

View Article and Find Full Text PDF

Insufficient perfusion of the trophoblast by maternal blood is associated with an increased generation of reactive oxygen species and complications of the placenta. In this study, we first examined whether rosiglitazone, an agonist of the peroxisome proliferator-activated receptor-γ (PPARγ), protects the human trophoblast from oxidative injury by regulating key antioxidant proteins, catalase (CAT) and the superoxide dismutases (SOD1 and SOD2). In first trimester placental explants, localization of CAT was limited to cytotrophoblasts, whereas SOD1 was expressed in both the cyto- and syncytiotrophoblasts.

View Article and Find Full Text PDF

Background: Early during human development, the trophoblast lineage differentiates to commence placentation. Where the placenta contacts the uterine decidua, extravillous trophoblast (EVT) cells differentiate and invade maternal tissues. EVT cells, identified by expression of HLA-G, invade into uterine blood vessels (endovascular EVT), as well as glands (endoglandular EVT), and open such luminal structures towards the intervillous space of the placenta.

View Article and Find Full Text PDF

Background: Maternal alcohol abuse leading to fetal alcohol spectrum disorder (FASD) includes fetal growth restriction (FGR). Ethanol (EtOH) induces apoptosis of human placental trophoblast cells, possibly disrupting placentation and contributing to FGR in FASD. EtOH facilitates apoptosis in several embryonic tissues, including human trophoblasts, by raising intracellular Ca .

View Article and Find Full Text PDF

Background: Small ubiquitin-like modifiers (SUMOs) conjugate to proteins post-translationally, thereby affecting target localization, activity and stability. Functional SUMO family members identified in the human placenta include SUMO-1 to SUMO-3, which are elevated in pre-eclampsia. Whether the fourth isoform, SUMO-4, plays a role in placental development and function remains unknown.

View Article and Find Full Text PDF

Trophoblast cells are the first embryonic lineage to differentiate during human development, and are needed to sustain fetal life through their role in constructing a placenta. As the fetus grows, the trophoblast rapidly expands and further differentiates to produce an extravillous subtype that invades the maternal tissues. Some of the extravillous trophoblast cells find their way into the reproductive tract, and can be safely captured by noninvasive collection from the endocervical canal, similarly to a Pap smear.

View Article and Find Full Text PDF

Study Question: Does low molecular weight heparin (LMWH) require heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) signaling to induce extravillous trophoblast differentiation and decrease apoptosis during oxidative stress?

Summary Answer: LMWH increased HBEGF expression and secretion, and HBEGF signaling was required to stimulate trophoblast extravillous differentiation, increase invasion in vitro and reduce trophoblast apoptosis during oxidative stress.

What Is Known Already: Abnormal trophoblast differentiation and survival contribute to placental insufficiency syndromes, including preeclampsia and intrauterine growth restriction. Preeclampsia often manifests as a pro-thrombotic state, with unsuccessful transformation of the spiral arteries that reduces oxygen supply and can produce placental infarction.

View Article and Find Full Text PDF

Introduction: Elevated inflammation accounts for approximately 30% of preterm birth (PTB) cases. We previously reported that targeting the peroxisome proliferator-activated receptor gamma (PPARγ) pathway reduced the incidence of PTB in the mouse model of endotoxin-induced PTB. The PPARγ has proven anti-inflammatory functions and its activation via rosiglitazone significantly downregulated the systemic inflammatory response and reduced PTB and stillbirth rate by 30% and 41%, respectively, in our model.

View Article and Find Full Text PDF

Single-gene mutations account for more than 6000 diseases, 10% of all pediatric hospital admissions, and 20% of infant deaths. Down syndrome and other aneuploidies occur in more than 0.2% of births worldwide and are on the rise because of advanced reproductive age.

View Article and Find Full Text PDF

A contributing factor to poor placental perfusion, leading to intrauterine growth restriction and preeclampsia, is the failure of invading extravillous trophoblast (EVT) cells to remodel the maternal uterine arteries during the first and second trimesters of pregnancy. Noninvasive assessment of EVT cells in ongoing pregnancies is possible beginning three weeks after conception, using trophoblast retrieval and isolation from the cervix (TRIC). Seven proteins were semi-quantified by immunofluorescence microscopy in EVT cells obtained between gestational weeks 6 and 20 from pregnancies with normal outcomes (N = 29) and those with intrauterine growth restriction or preeclampsia (N = 12).

View Article and Find Full Text PDF

Background: Intrauterine growth restriction (IUGR), which refers to reduced fetal growth in the context of placental insufficiency, is etiologically heterogeneous. IUGR is associated not only with perinatal morbidity and mortality but also with adult-onset disorders, such as cardiovascular disease and diabetes, posing a major health burden. Placental epigenetic dysregulation has been proposed as one mechanism that causes IUGR; however, the spectrum of epigenetic pathophysiological mechanisms leading to IUGR remains to be elucidated.

View Article and Find Full Text PDF

Study Question: Is protein expression of the muscle segment homeobox gene family member MSX1 altered in the human secretory endometrium by cell type, developmental stage or fertility?

Summary Answer: MSX1 protein levels, normally elevated in the secretory phase endometrium, were significantly reduced in endometrial biopsies obtained from women of infertile couples.

What Is Known Already: Molecular changes in the endometrium are important for fertility in both animals and humans. Msx1 is expressed in the preimplantation mouse uterus and regulates uterine receptivity for implantation.

View Article and Find Full Text PDF

Myeloperoxidase (MPO), an abundant heme-containing enzyme present in neutrophils, monocytes, and macrophages, is produced in high levels during inflammation, and associated with poor reproductive outcomes. MPO is known to generate hypochlorous acid (HOCl), a damaging reactive oxygen species (ROS) utilizing hydrogen peroxide (H2O2) and chloride (Cl-). Here we investigate the effect of activated immune cells and MPO on oocyte quality.

View Article and Find Full Text PDF

Congenital adrenal hyperplasia (CAH) is an autosomal recessive defect in cortisol biosynthesis that elevates fetal androgen levels to cause genital ambiguity and external genital masculinization in newborn females. Introducing dexamethasone in utero by 7 weeks gestation precludes virilization of affected females. However, identification of a male fetus prior to week 7 could avert the necessity of steroid treatment in half of pregnancies at risk of CAH.

View Article and Find Full Text PDF

Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator-activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice.

View Article and Find Full Text PDF

Introduction: Apelin is a potent inotropic agent and causes endothelium-mediated vasodilation. Its cardiovascular profile suggests a role in the regulation of gestational hemodynamics.

Methods: We longitudinally assessed maternal serum apelin levels and hemodynamics (cardiac output and total peripheral resistance) between 20 and 34 weeks gestation in 18 women at high risk of placental dysfunction.

View Article and Find Full Text PDF