Publications by authors named "Drewes T"

Background: The aim of this biomechanical cadaver study of calcaneal fractures was to investigate whether a locking calcaneal plate provides more stiffness in osteoporotic bone compared to a non-locking plate.

Materials And Methods: Sixteen fresh frozen bone mineral density (BMD)-matched cadaver feet were tested in a four-part model of a Sanders Type IIB calcaneal fracture. The fractures were fixed either with a non-locking AO (Sanders) plate or an interlocking AO plate (Synthes, Paoli, PA) to the lateral calcaneal wall with six screws.

View Article and Find Full Text PDF

Death-associated protein kinase (DAPK) is a serine/threonine kinase that contributes to pro-apoptotic signaling on cytokine exposure. The role of DAPK in macrophage-associated tumor cell death is currently unknown. Recently, we suggested a new function for DAPK in the induction of apoptosis during the interaction between colorectal tumor cells and tumor-associated macrophages.

View Article and Find Full Text PDF

Protein kinase B (PKB), an Ag receptor activated serine-threonine kinase, controls various cellular processes including proliferation and survival. However, PKB function in thymocyte development is still unclear. We report PKB as an important negative regulator of the calcineurin (CN)-regulated transcription factor NFAT in early T cell differentiation.

View Article and Find Full Text PDF

Cancer/testis antigens (CTAs) are characterized by their restricted expression pattern. In normal individuals their expression is largely restricted to the testis. In the case of cancer patients, CTA expression has also been frequently observed in the tumoral cells.

View Article and Find Full Text PDF

We demonstrate the presence of a new member of the orphan nuclear receptor hepatocyte nuclear factor 4 (HNF4) subfamily in mouse which is genetically distinct from the previously characterized mouse HNF4alpha gene. The new member of the HNF4 subfamily shows highest amino acid identity, similar tissue distribution and syntenous chromosomal localization to the recently described human HNF4gamma (NR2A2), we therefore classify it as mouse HNF4gamma (mHNF4gamma). A combination of RT-PCR and immunohistochemical analysis showed expression of mHNF4gamma mRNA and protein in the endocrine pancreas, testes, kidney and gut.

View Article and Find Full Text PDF

The transcription factor hepatocyte nuclear factor 4 (HNF4) is an orphan member of the nuclear receptor superfamily expressed in mammals in liver, kidney, and the digestive tract. Recently, we isolated the Xenopus homolog of mammalian HNF4 and revealed that it is not only a tissue-specific transcription factor but also a maternal component of the Xenopus egg and distributed within an animal-to-vegetal gradient. We speculate that this gradient cooperates with the vegetally localized embryonic induction factor activin A to activate expression of HNF1alpha, a tissue-specific transcription factor with an expression pattern overlapping that of HNF4.

View Article and Find Full Text PDF

Human renal cell carcinogenesis is usually accompanied by dedifferentiation processes including the loss of expression of tissue specifically expressed genes. Based on the hypothesis that these dedifferentiation processes might be attributed to a functional change in tissue specific transcription factors, we have analyzed the expression and function of the tissue specific transcription factor HNF4 alpha in human renal cell carcinomas. By Western blot analysis and gel retardation assay using HNF4 alpha specific antibodies, we observed that in most cases the amount as well as the binding activity of HNF4 is reduced in the tumor samples compared to the corresponding normal tissues.

View Article and Find Full Text PDF

Hepatocyte nuclear factor 4 (HNF4) was first identified as a DNA binding activity in rat liver nuclear extracts. Protein purification had then led to the cDNA cloning of rat HNF4, which was found to be an orphan member of the nuclear receptor superfamily. Binding sites for this factor were identified in many tissue-specifically expressed genes, and the protein was found to be essential for early embryonic development in the mouse.

View Article and Find Full Text PDF

The tissue-specific transcription factors of the hepatocyte nuclear factor-4 (HNF4), hepatocyte nuclear factor-3 (HNF3), and liver factor B1 (LFB1) families are thought to play a role in the development of internal organs and in the tissue-specific expression of many distinct genes. We have now constructed derivatives of these proteins by introducing the hormone-binding domain of the estrogen receptor and show that in transient transfections these chimeric proteins act as estrogen-inducible transcription factors with the DNA sequence specificity of the original factors. These chimeric transcription factors are differently affected by the partial estrogen antagonist 4-hydroxytamoxifen and the pure antiestrogen N-n-butyl-11-(3,17-dihydroxy-estra-1,3,5(10)-trien- 7 alpha-yl)N-methyl-undecamide (ICI 164384); 4-hydroxytamoxifen activates, at least partially, all the chimeric factors and the estrogen receptor, while ICI 164384 surprisingly activates the transcription factors derived from HNF3 and LFB1 and inhibits only the estrogen receptor and the HNF4 derivative.

View Article and Find Full Text PDF

The A-activator binding site (AABS), present in the Xenopus A2 vitellogenin gene and several mammalian liver specifically expressed genes, interacts with different liver specific transcription factors including LFB1- and C/EBP-isobinders. We have now isolated some additional proteins interacting with AABS and show that they are HNF3-isobinders. The interactions between AABS and members of the HNF3 family are confirmed by binding studies using bacterially made HNF3-alpha protein.

View Article and Find Full Text PDF

We have isolated and characterized a human cDNA (HBK2) that is homologous to novel member (RCK2) of the K+ channel RCK gene family expressed in rat brain. RCK2 mRNA was detected predominantly in midbrain areas and brainstem. The primary sequences of the HBK2/RCK2 K+ channel proteins exhibit major differences to other members of the RCK gene family.

View Article and Find Full Text PDF