Publications by authors named "Drew Weissman"

Four-component lipid nanoparticles (LNPs) and viral vectors are key for mRNA vaccine and therapeutics delivery. LNPs contain ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG)-conjugated lipids and deliver mRNA for COVID-19 vaccines to liver when injected intravenously or intramuscularly. In 2021, we elaborated one-component ionizable amphiphilic Janus dendrimers (IAJDs) accessing targeted delivery of mRNA.

View Article and Find Full Text PDF

Pre-eclampsia is a placental disorder that affects 3-5% of all pregnancies and is a leading cause of maternal and fetal morbidity worldwide. With no drug available to slow disease progression, engineering ionizable lipid nanoparticles (LNPs) for extrahepatic messenger RNA (mRNA) delivery to the placenta is an attractive therapeutic option for pre-eclampsia. Here we use high-throughput screening to evaluate a library of 98 LNP formulations in vivo and identify a placenta-tropic LNP (LNP 55) that mediates more than 100-fold greater mRNA delivery to the placenta in pregnant mice than a formulation based on the Food and Drug Administration-approved Onpattro LNP (DLin-MC3-DMA).

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) monocyte and macrophage therapies are promising solid tumor immunotherapies that can overcome the challenges facing conventional CAR T cell therapy. mRNA lipid nanoparticles (mRNA-LNPs) offer a viable platform for engineering of CAR monocytes with transient and tunable CAR expression to reduce off-tumor toxicity and streamline cell manufacturing. However, identifying LNPs with monocyte tropism and intracellular delivery potency is difficult using traditional screening techniques.

View Article and Find Full Text PDF
Article Synopsis
  • * The study presents a method combining iterative chemical derivatization with combinatorial chemistry to enhance the design of propargylamine-based ionizable lipids (A-lipids), leading to improved delivery and biodegradability.
  • * After multiple optimization cycles, new A-lipids were found that deliver mRNA vaccines and editors more effectively than traditional ionizable lipids, showing promise for advancing LNPs in therapeutic applications.
View Article and Find Full Text PDF

Influenza viruses cause substantial morbidity and mortality every year despite seasonal vaccination. mRNA-based vaccines have the potential to elicit more protective immune responses, but for maximal breadth and durability, it is desirable to deliver both the viral hemagglutinin and neuraminidase glycoproteins. Delivering multiple antigens individually, however, complicates manufacturing and increases cost, thus it would be beneficial to express both proteins from a single mRNA.

View Article and Find Full Text PDF

One-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimers (IAJDs) were discovered in our laboratories in 2021 to represent a new class of synthetic vectors for the targeted delivery of messenger RNA (mRNA). They coassemble with mRNA by simple injection of their ethanol solution into a pH 4 acetate buffer containing the nucleic acid into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions. DNPs are competitive with 4-component lipid nanoparticles (LNPs), which are used in commercial COVID-19 vaccines, except that IAJDs are prepared in fewer reaction steps than each individual component of the LNPs.

View Article and Find Full Text PDF
Article Synopsis
  • Clostridium difficile infection (CDI) poses a significant public health risk, with few prevention methods available.* -
  • Researchers developed a multivalent mRNA-lipid nanoparticle vaccine that stimulates strong immune responses in various animal models, unaffected by gut microbiota changes.* -
  • The vaccine effectively protects mice from severe CDI and enhances the elimination of harmful bacteria from the gut, highlighting mRNA-LNP technology as a potential new treatment avenue.*
View Article and Find Full Text PDF

Systemic delivery of messenger RNA (mRNA) for tissue-specific targeting using lipid nanoparticles (LNPs) holds great therapeutic potential. Nevertheless, how the structural characteristics of ionizable lipids (lipidoids) impact their capability to target cells and organs remains unclear. Here we engineered a class of siloxane-based ionizable lipids with varying structures and formulated siloxane-incorporated LNPs (SiLNPs) to control in vivo mRNA delivery to the liver, lung and spleen in mice.

View Article and Find Full Text PDF

Nucleoside-modified mRNA-LNP vaccines have revolutionized vaccine development against infectious pathogens due to their ability to elicit potent humoral and cellular immune responses. In this article, we present the results of the first norovirus vaccine candidate employing mRNA-LNP platform technology. The mRNA-LNP bivalent vaccine encoding the major capsid protein VP1 from GI.

View Article and Find Full Text PDF

Messenger RNA (mRNA) vaccines have revolutionized the fight against infectious diseases and are poised to transform other therapeutic areas. Lipid nanoparticles (LNP) represent the most successful delivery system for mRNA. While the mRNA-LNP products currently in clinics are stored as frozen suspensions, there is evidence that freeze-drying mRNA-LNP into dry powders can potentially enable their storage and handling at non-freezing temperatures.

View Article and Find Full Text PDF
Article Synopsis
  • Animals can develop a resistance to ticks after getting bitten multiple times, known as acquired tick resistance (ATR).
  • Scientists tested a vaccine using mRNA that focuses on a specific tick protein in guinea pigs, which made the animals produce special antibodies.
  • The vaccinated guinea pigs showed skin reactions at tick bite sites, and researchers found that certain body processes, like histamine activation, are involved in this reaction.
View Article and Find Full Text PDF
Article Synopsis
  • First-generation COVID-19 vaccines based on the spike (S) protein have decreased in effectiveness against new Omicron variants, highlighting the need for more broadly protective vaccines.
  • Researchers developed a new mRNA vaccine targeting the nucleocapsid (N) protein and tested its efficacy alone and in combination with the existing S-based vaccine in hamsters.
  • Results showed that the combined mRNA vaccines (mRNA-S+N) provided complete protection against Omicron variants, suggesting their potential as a comprehensive COVID-19 vaccine.
View Article and Find Full Text PDF

Nanoparticles are promising for drug delivery applications, with several clinically approved products. However, attaining high nanoparticle accumulation in solid tumours remains challenging. Here we show that tumour cell-derived small extracellular vesicles (sEVs) block nanoparticle delivery to tumours, unveiling another barrier to nanoparticle-based tumour therapy.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is linked to toxic Aβ plaques in the brain and activation of innate responses. Recent findings however suggest that the disease may also depend on the adaptive immunity, as B cells exacerbate and CD8 T cells limit AD-like pathology in mouse models of amyloidosis. Here, by artificially blocking or augmenting CD8 T cells in the brain of 5xFAD mice, we provide evidence that AD-like pathology is promoted by pathogenic, proinflammatory cytokines and exhaustion markers expressing CXCR6 CD39CD73 CD8 T-like cells.

View Article and Find Full Text PDF

Nucleoside-modified mRNA technology has revolutionized vaccine development with the success of mRNA COVID-19 vaccines. We used modified mRNA technology for the design of envelopes (Env) to induce HIV-1 broadly neutralizing antibodies (bnAbs). However, unlike SARS-CoV-2 neutralizing antibodies that are readily made, HIV-1 bnAb induction is disfavored by the immune system because of the rarity of bnAb B cell precursors and the cross-reactivity of bnAbs targeting certain Env epitopes with host molecules, thus requiring optimized immunogen design.

View Article and Find Full Text PDF
Article Synopsis
  • - The HIV-1 envelope glycoprotein (Env) is crucial for the virus's ability to infect cells, requiring a specific cleavage process for its subunits to function in viral entry; a new method aims to enhance immunization strategies against HIV by genetically expressing a stable Env trimer on cell surfaces.
  • - Researchers developed a 'native flexibly linked' (NFL) construct to simplify the expression of these HIV Env trimers without needing cleavage, ensuring they retain the right structure (native-like conformation) and can effectively stimulate the immune response.
  • - The study shows that immunizing rabbits with mRNA lipid nanoparticles containing these membrane-bound stabilized Env trimers elicited strong neutralizing antibody responses, indicating potential for this genetic
View Article and Find Full Text PDF

Monogenic blood diseases are among the most common genetic disorders worldwide. These diseases result in significant pediatric and adult morbidity, and some can result in death prior to birth. Novel ex vivo hematopoietic stem cell (HSC) gene editing therapies hold tremendous promise to alter the therapeutic landscape but are not without potential limitations.

View Article and Find Full Text PDF

Current clinical strategies for the delivery of pulmonary therapeutics to the lung are primarily targeted to the upper portions of the airways. However, targeted delivery to the lower regions of the lung is necessary for the treatment of parenchymal lung injury and disease. Here, we have developed an mRNA therapeutic for the lower lung using one-component Ionizable Amphiphilic Janus Dendrimers (IAJDs) as a delivery vehicle.

View Article and Find Full Text PDF

Resurgence in malaria has been noted in 2022 with 249 million clinical cases resulting in 608,000 deaths, mostly in children under five. Two vaccines, RTS, S, and more recently R21, targeting the circumsporozoite protein (CSP) are recommended by the WHO but are not yet widely available. Strong humoral responses to neutralize sporozoites before they can infect the hepatocytes are important for vaccine-mediated protection.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are widely used for mRNA delivery, with cationic lipids greatly affecting biodistribution, cellular uptake, endosomal escape and transfection efficiency. However, the laborious synthesis of cationic lipids limits the discovery of efficacious candidates and slows down scale-up manufacturing. Here we develop a one-pot, tandem multi-component reaction based on the rationally designed amine-thiol-acrylate conjugation, which enables fast (1 h) and facile room-temperature synthesis of amidine-incorporated degradable (AID) lipids.

View Article and Find Full Text PDF

In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines.

View Article and Find Full Text PDF

α-Thalassemia (AT) is one of the most commonly occurring inherited hematological diseases. However, few treatments are available, and allogeneic bone marrow transplantation is the only available therapeutic option for patients with severe AT. Research into AT has remained limited because of a lack of adult mouse models, with severe AT typically resulting in in utero lethality.

View Article and Find Full Text PDF

Maternal antibodies (matAbs) protect against a myriad of pathogens early in life; however, these antibodies can also inhibit de novo immune responses against some vaccine platforms. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) matAbs are efficiently transferred during pregnancy and protect infants against subsequent SARS-CoV-2 infections. It is unknown if matAbs inhibit immune responses elicited by different types of SARS-CoV-2 vaccines.

View Article and Find Full Text PDF

Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two male mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes.

View Article and Find Full Text PDF