The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a catalog of genomic annotations. To date, the project has generated over 4000 experiments across more than 350 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory network and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All ENCODE experimental data, metadata and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage and distribution to community resources and the scientific community.
View Article and Find Full Text PDFThe laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization.
View Article and Find Full Text PDFIn perceptual decision making, the selection of an appropriate action depends critically on an organism's ability to use sensory inputs to accumulate evidence for a decision. However, differentiating decision-related processes from effects of "time on task" can be difficult. Here we combine the response signal paradigm, in which the experimenter rather than the subject dictates the time of the response, and independent components analysis (ICA) to search for signatures consistent with time on task and decision making, respectively, throughout the brain.
View Article and Find Full Text PDFHumans can quickly engage a neural network to transform complex visual stimuli into a motor response. Activity from a key region within this network, the intraparietal sulcus (IPS), has been associated with evidence accumulation and motor planning, thus implicating it in sensorimotor transformations. If such transformations occur within a brain region, a key and untested prediction is that neural activity reflecting both the parametric amount of evidence available and the timing of motor planning can be independently manipulated.
View Article and Find Full Text PDFAlthough perceptual decision making activates a network of brain areas involved in sensory, integrative, and motor functions, circuit activity can clearly be modulated by factors beyond the stimulus. Of particular interest is to understand how the network is modulated by top-down factors such as attention. Here, we demonstrate in a motion coherence task that selective attention produces marked changes in the blood oxygen level-dependent (BOLD) response in a subset of regions within a human perceptual decision-making circuit.
View Article and Find Full Text PDFGenetic information in forensic studies is largely limited to CODIS data and the ability to match samples and assign them to an individual. However, there are circumstances, in which a given DNA sample does not match anyone in the CODIS database, and no other information about the donor is available. In this study, we determined 75 SNPs in 24 genes (previously implicated in human or animal pigmentation studies) for the analysis of single- and multi-locus associations with hair, skin, and eye color in 789 individuals of various ethnic backgrounds.
View Article and Find Full Text PDFOur ability to make rapid decisions based on sensory information belies the complexity of the underlying computations. Recently, "accumulator" models of decision making have been shown to explain the activity of parietal neurons as macaques make judgments concerning visual motion. Unraveling the operation of a decision-making circuit, however, involves understanding both the responses of individual components in the neural circuitry and the relationships between them.
View Article and Find Full Text PDFSox6, a member of the Sox transcription factor family, is essential for the silencing of epsilon y globin gene expression in definitive erythropoiesis of mice. Homozygous Sox6-null mice are neonatally lethal, precluding analysis at later stages. We created adult mice that are deficient in Sox6 specifically in hematopoietic tissues by transplanting embryonic liver stem cells from Sox6-deficient mice into lethally irradiated congenic wild-type adult mice.
View Article and Find Full Text PDFSox6 is a member of the Sox transcription factor family that is defined by the conserved high mobility group (HMG) DNA binding domain, first described in the testis determining gene, Sry. Previous studies have suggested that Sox6 plays a role in the development of the central nervous system, cartilage, and muscle. In the Sox6-deficient mouse, p100H, epsilony globin is persistently expressed, and increased numbers of nucleated red cells are present in the fetal circulation.
View Article and Find Full Text PDF