Photoredox catalysis has experienced a revitalized interest from the synthesis community during the past decade. For example, photoredox/Ni dual catalysis protocols have been developed to overcome several inherent limitations of palladium-catalyzed cross-couplings by invoking a single-electron transmetalation pathway. This Perspective highlights advances made by our laboratory since the inception of the photoredox/Ni cross-coupling of benzyltrifluoroborates with aryl bromides.
View Article and Find Full Text PDFAn iridium photocatalyst and visible light facilitate a room temperature, nickel-catalyzed coupling of (hetero)aryl bromides with activated α-heterosubstituted or benzylic C(sp)-H bonds. Mechanistic investigations on this unprecedented transformation have uncovered the possibility of an unexpected mechanism hypothesized to involve a Ni-Br homolysis event from an excited-state nickel complex. The resultant bromine radical is thought to abstract weak C(sp)-H bonds to generate reactive alkyl radicals that can be engaged in Ni-catalyzed arylation.
View Article and Find Full Text PDFIridium- and ruthenium-free approaches to protected allylic amines and alkyl nitriles under photoredox conditions are reported. An inexpensive organic dye, eosin Y, catalyzes coupling of Boc-protected potassium α-aminomethyltrifluoroborates with a variety of substituted alkenyl sulfones through an α-aminomethyl radical addition-elimination pathway. Allylic and homoallylic amines were formed in moderate yields with high E/Z selectivity.
View Article and Find Full Text PDFWe report the chiral diene ligated rhodium-catalyzed dynamic kinetic asymmetric transformation (DYKAT) of racemic secondary allylic trichloroacetimidates with a variety of N-methyl anilines, providing allylic N-methyl arylamines in high yields, regioselectivity, and enantiomeric excess. The rhodium-catalyzed DYKAT method addresses limitations previously associated with this particular class of aromatic nitrogen nucleophiles.
View Article and Find Full Text PDF