Background: Tissue-engineered vascular grafts (TEVGs) have the potential to advance the surgical management of infants and children requiring congenital heart surgery by creating functional vascular conduits with growth capacity.
Methods: Herein, we used an integrative computational-experimental approach to elucidate the natural history of neovessel formation in a large animal preclinical model; combining an in vitro accelerated degradation study with mechanical testing, large animal implantation studies with in vivo imaging and histology, and data-informed computational growth and remodeling models.
Results: Our findings demonstrate that the structural integrity of the polymeric scaffold is lost over the first 26 weeks in vivo, while polymeric fragments persist for up to 52 weeks.