An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe diverse bacterial communities that colonize the gastrointestinal tract play an essential role in maintaining immune homeostasis through the production of critical metabolites such as short-chain fatty acids (SCFAs) and this can be disrupted by antibiotic use. However, few studies have addressed the effects of specific antibiotics longitudinally on the microbiome and immunity. We evaluated the effects of four specific antibiotics: enrofloxacin, cephalexin, paromomycin, and clindamycin, in healthy female rhesus macaques.
View Article and Find Full Text PDFThe mesenteric lymph nodes (MLN) and the liver are exposed to microbes and microbial products from the gastrointestinal (GI) tract, making them immunologically unique. The GI tract and associated MLN are sites of early viral replication in human immunodeficiency virus (HIV) infection and the MLN are likely important reservoir sites that harbor latently-infected cells even after prolonged antiretroviral therapy (ART). The liver has been shown to play a significant role in immune responses to lentiviruses and appears to play a significant role in clearance of virus from circulation.
View Article and Find Full Text PDFUnlike peripheral lymph nodes (PLN), the mesenteric lymph nodes (MLN) draining the gastrointestinal (GI) tract are exposed to microbes and microbial products from the intestines and as such, are immunologically distinct. GI draining (MLN) have also been shown to be sites of early viral replication and likely impact early events that determine the course of HIV infection. They also are important reservoir sites that harbor latently-infected cells and from which the virus can emerge even after prolonged combination antiretroviral therapy (cART).
View Article and Find Full Text PDFA central treatment resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. We have developed a small recombinant protein (JO-1) that triggers the transient opening of intercellular junctions and thus increases the efficacy of monoclonal antibodies and chemotherapeutic drugs without causing toxicity in mouse tumor models. Here, we provide data toward the clinical translation of an affinity-enhanced version of JO-1, which we call JO-4, in combination with PEGylated liposomal doxorubicin (PLD)/Doxil for ovarian cancer therapy.
View Article and Find Full Text PDF