Trade studies used to design optical imaging systems frequently result in systems being undersampled. The resolution of such systems is limited by the finite size of the detector pixels rather than the cutoff spatial frequency of the optical system. Multiframe super-resolution techniques can be used to combine a number of spatially displaced images from such systems into a single, high-resolution image.
View Article and Find Full Text PDFBackground: Diagnosis of infectious diseases now benefits from advancing technology to perform multiplex analysis of a growing number of variables. These advances enable simultaneous surveillance of markers characterizing species and strain complexity, mutations associated with drug susceptibility, and antigen-based polymorphisms in relation to evaluation of vaccine effectiveness. We have recently developed assays detecting single nucleotide polymorphisms (SNPs) in the P.
View Article and Find Full Text PDFIncomplete malaria control efforts have resulted in a worldwide increase in resistance to drugs used to treat the disease. A complex array of mutations underlying antimalarial drug resistance complicates efficient monitoring of parasite populations and limits the success of malaria control efforts in regions of endemicity. To improve the surveillance of Plasmodium falciparum drug resistance, we developed a multiplex ligase detection reaction-fluorescent-microsphere-based assay (LDR-FMA) that identifies single nucleotide polymorphisms (SNPs) in the P.
View Article and Find Full Text PDF