Publications by authors named "Drew Gehring"

AMPK is a serine threonine kinase composed of a heterotrimer of a catalytic, kinase-containing α and regulatory β and γ subunits. Here we show that individual AMPK subunit expression and requirement for survival varies across colon cancer cell lines. While AMPKα1 expression is relatively consistent across colon cancer cell lines, AMPKα1 depletion does not induce cell death.

View Article and Find Full Text PDF

Identification and characterization of survival pathways active in tumor cells but absent in normal tissues provide opportunities to develop effective anticancer therapies with reduced toxicity to the patient. We show here that, like kinase suppressor of Ras 1 (KSR1), EPH (erythropoietin-producing hepatocellular carcinoma) receptor B4 (EPHB4) is aberrantly overexpressed in human colon tumor cell lines and selectively required for their survival. KSR1 and EPHB4 support tumor cell survival by promoting the expression of downstream targets, Myc and the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β).

View Article and Find Full Text PDF

A major goal of cancer research is the identification of tumor-specific vulnerabilities that can be exploited for the development of therapies that are selectively toxic to the tumor. We show here that the transcriptional coactivators peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β) and estrogen-related receptor α (ERRα) are aberrantly expressed in human colon cell lines and tumors. With kinase suppressor of Ras 1 (KSR1) depletion as a reference standard, we used functional signature ontology (FUSION) analysis to identify the γ1 subunit of AMP-activated protein kinase (AMPK) as an essential contributor to PGC1β expression and colon tumor cell survival.

View Article and Find Full Text PDF

Background: Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression.

View Article and Find Full Text PDF