Publications by authors named "Drew C Higgins"

Electrochemical CO reduction can serve as a sequential step in the transformation of CO into multicarbon fuels and chemicals. In this study, we provide insights on how to steer selectivity for CO reduction almost exclusively toward a single multicarbon oxygenate by carefully controlling the catalyst composition and its surrounding reaction conditions. Under alkaline reaction conditions, we demonstrate that planar CuAg electrodes can reduce CO to acetaldehyde with over 50% Faradaic efficiency and over 90% selectivity on a carbon basis at a modest electrode potential of -0.

View Article and Find Full Text PDF

Silicon has shown promise for use as a small band gap (1.1 eV) absorber material in photoelectrochemical (PEC) water splitting. However, the limited stability of silicon in acidic electrolyte requires the use of protection strategies coupled with catalysts.

View Article and Find Full Text PDF

Ni,N-doped carbon catalysts have shown promising catalytic performance for CO electroreduction (CO R) to CO; this activity has often been attributed to the presence of nitrogen-coordinated, single Ni atom active sites. However, experimentally confirming Ni-N bonding and correlating CO reduction (CO R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile-derived Ni,N-doped carbon electrocatalysts (Ni-PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials.

View Article and Find Full Text PDF

In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm) single-crystal substrates, and confirm epitaxial growth in the <100>, <111>, and <751> orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films.

View Article and Find Full Text PDF

Rich, porous graphene frameworks decorated with uniformly dispersed active sites are prepared by using polyaniline as a graphene precursor and introducing phenanthroline as a pore-forming agent. The unprecedented fuel-cell performance of this electrocatalyst is linked to the graphene frameworks with vast distribution of pore sizes, which maximizes the active-sites accessibility, facilitates mass-transport properties, and improves the carbon corrosion resistance.

View Article and Find Full Text PDF

Graphene supported Pt nanostructures have great potential to be used as catalysts in electrochemical energy conversion and storage technologies; however the simultaneous control of Pt morphology and dispersion, along with ideally tailoring the physical properties of the catalyst support properties has proven very challenging. Using sulfur doped graphene (SG) as a support material, the heterogeneous dopant atoms could serve as nucleation sites allowing for the preparation of SG supported Pt nanowire arrays with ultra-thin diameters (2-5 nm) and dense surface coverage. Detailed investigation of the preparation technique reveals that the structure of the resulting composite could be readily controlled by fine tuning the Pt nanowire nucleation and growth reaction kinetics and the Pt-support interactions, whereby a mechanistic platinum nanowire array growth model is proposed.

View Article and Find Full Text PDF

In the present work, we have designed and synthesized a new highly durable iron phtalocyanine based nonprecious oxygen reduction reaction (ORR) catalyst (Fe-SPc) for polymer electrolyte membrane fuel cells (PEMFCs). The Fe-SPc, with a novel structure inspired by that of naturally occurring oxygen activation catalysts, is prepared by a nonpyrolyzing method, allowing adequate control of the atomic structure and surface properties of the material. Significantly improved ORR stability of the Fe-SPc is observed compared with the commercial Fe-Pc catalysts.

View Article and Find Full Text PDF