Publications by authors named "Drepper F"

The structure of human coagulation factor XIII (FXIII), a heterotetrameric plasma pro-transglutaminase that covalently crosslinks pre-formed fibrin polymers, remains elusive until today. The heterotetrameric complex is composed of two catalytic FXIII-A and two protective FXIII-B subunits. Structural etiology underlying FXIII deficiency has so far been derived from crystallographic structures, all of which are currently available for the FXIII-A2 homodimer only.

View Article and Find Full Text PDF

Ribosome hibernation is a commonly used strategy that protects ribosomes under unfavorable conditions and regulates developmental processes. Multiple ribosome-hibernation factors have been identified in all domains of life, but due to their structural diversity and the lack of a common inactivation mechanism, it is currently unknown how many different hibernation factors exist. Here, we show that the YqjD/ElaB/YgaM paralogs, initially discovered as membrane-bound ribosome binding proteins in E.

View Article and Find Full Text PDF
Article Synopsis
  • Sterols are common compounds found in cell membranes and are resistant to breakdown due to their water-insoluble nature; a new pathway for degrading cholesterol has been discovered in the bacterium Sterolibacterium denitrificans.
  • This pathway includes a series of ATP-dependent enzyme reactions that modify sterol structures, specifically targeting cholesterol while being unsuitable for other steroids like stigmasterol.
  • Researchers identified a key enzyme from S. denitrificans that facilitates the oxidation of sterol intermediates, ultimately enabling a process to hydroxylate the isoprenoid side chain without requiring oxygen, thus presenting a novel method for sterol degradation.
View Article and Find Full Text PDF

Control of protein stoichiometry is essential for cell function. Mitochondrial oxidative phosphorylation (OXPHOS) presents a complex stoichiometric challenge as the ratio of the electron transport chain (ETC) and ATP synthase must be tightly controlled, and assembly requires coordinated integration of proteins encoded in the nuclear and mitochondrial genome. How correct OXPHOS stoichiometry is achieved is unknown.

View Article and Find Full Text PDF

Synthetic biology applies concepts from electrical engineering and information processing to endow cells with computational functionality. Transferring the underlying molecular components into materials and wiring them according to topologies inspired by electronic circuit boards has yielded materials systems that perform selected computational operations. However, the limited functionality of available building blocks is restricting the implementation of advanced information-processing circuits into materials.

View Article and Find Full Text PDF

Transient stress experiences not only trigger acute stress responses, but can also have long-lasting effects on cellular functions. In Caenorhabditis elegans, a brief exposure to heat shock during early adulthood extends lifespan and improves stress resistance, a phenomenon known as heat hormesis. Here, we investigated the prolonged effect of hormetic heat stress on the transcriptome of worms and found that the canonical heat shock response is followed by a profound transcriptional reprogramming in the post-stress period.

View Article and Find Full Text PDF

Calcineurin B homologous protein 3 (CHP3) is an EF-hand Ca-binding protein involved in regulation of cancerogenesis, cardiac hypertrophy, and neuronal development through interactions with sodium/proton exchangers (NHEs) and signalling proteins. While the importance of Ca binding and myristoylation for CHP3 function has been recognized, the underlying molecular mechanism remained elusive. In this study, we demonstrate that Ca binding and myristoylation independently affect the conformation and functions of human CHP3.

View Article and Find Full Text PDF
Article Synopsis
  • Peroxisomes are essential organelles involved in metabolism, and their dysfunction can lead to human diseases; their proper functioning requires the import of specific proteins tagged with a peroxisomal targeting signal (PTS) 1.
  • The receptor protein Pex5p is responsible for recruiting these PTS1-proteins for import, and the study identifies 22 phosphorylation sites on Pex5p that may regulate this process post-translationally.
  • The research shows that phospho-mimicking mutations in Pex5p decrease its ability to import certain PTS1-proteins, revealing a new mechanism where phosphorylation affects protein binding and cargo import, thereby influencing peroxisomal composition and overall metabolism.
View Article and Find Full Text PDF

Quantitative mass spectrometry-based proteomics has become a high-throughput technology for the identification and quantification of thousands of proteins in complex biological samples. Two frequently used tools, MaxQuant and MSstats, allow for the analysis of raw data and finding proteins with differential abundance between conditions of interest. To enable accessible and reproducible quantitative proteomics analyses in a cloud environment, we have integrated MaxQuant (including TMTpro 16/18plex), Proteomics Quality Control (PTXQC), MSstats, and MSstatsTMT into the open-source Galaxy framework.

View Article and Find Full Text PDF

Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP).

View Article and Find Full Text PDF

Photosystem I is defined as plastocyanin-ferredoxin oxidoreductase. Taking advantage of genetic engineering, kinetic analyses and cryo-EM, our data provide novel mechanistic insights into binding and electron transfer between PSI and Pc. Structural data at 2.

View Article and Find Full Text PDF

In sarcomeres, α-actinin cross-links actin filaments and anchors them to the Z-disk. FATZ (filamin-, α-actinin-, and telethonin-binding protein of the Z-disk) proteins interact with α-actinin and other core Z-disk proteins, contributing to myofibril assembly and maintenance. Here, we report the first structure and its cellular validation of α-actinin-2 in complex with a Z-disk partner, FATZ-1, which is best described as a conformational ensemble.

View Article and Find Full Text PDF

The universally conserved P-loop GTPases control diverse cellular processes, like signal transduction, ribosome assembly, cell motility, and intracellular transport and translation. YchF belongs to the Obg-family of P-loop GTPases and is one of the least characterized member of this family. It is unique because it preferentially hydrolyses ATP rather than GTP, but its physiological role is largely unknown.

View Article and Find Full Text PDF

Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive.

View Article and Find Full Text PDF

Import of yeast peroxisomal matrix proteins is initiated by cytosolic receptors, which specifically recognize and bind the respective cargo proteins. At the peroxisomal membrane, the cargo-loaded receptor interacts with the docking protein Pex14p that is tightly associated with Pex17p. Previous data suggest that this interaction triggers the formation of an import pore for further translocation of the cargo.

View Article and Find Full Text PDF

Abnormal changes of neuronal Tau protein, such as phosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer's disease. Abnormal phosphorylation is thought to precede aggregation and therefore to promote aggregation, but the nature and extent of phosphorylation remain ill-defined. Tau contains ∼85 potential phosphorylation sites, which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible.

View Article and Find Full Text PDF

The PI3K/Akt pathway promotes skeletal muscle growth and myogenic differentiation. Although its importance in skeletal muscle biology is well documented, many of its substrates remain to be identified. We here studied PI3K/Akt signaling in contracting skeletal muscle cells by quantitative phosphoproteomics.

View Article and Find Full Text PDF

The SecYEG translocon constitutes the major protein transport channel in bacteria and transfers an enormous variety of different secretory and inner-membrane proteins. The minimal core of the SecYEG translocon consists of three inner-membrane proteins, SecY, SecE, and SecG, which, together with appropriate targeting factors, are sufficient for protein transport However, the SecYEG translocon has been shown to associate with multiple partner proteins, likely allowing the SecYEG translocon to process its diverse substrates. To obtain a global view on SecYEG plasticity in , here we performed a quantitative interaction proteomic analysis, which identified several known SecYEG-interacting proteins, verified the interaction of SecYEG with quality-control proteins, and revealed several previously unknown putative SecYEG-interacting proteins.

View Article and Find Full Text PDF

Twin-arginine-dependent translocases transport folded proteins across bacterial, archaeal, and chloroplast membranes. Upon substrate binding, they assemble from hexahelical TatC and single-spanning TatA and TatB membrane proteins. Although structural and functional details of individual Tat subunits have been reported previously, the sequence and dynamics of Tat translocase assembly remain to be determined.

View Article and Find Full Text PDF

YidC/Oxa1/Alb3 are essential proteins that operate independently or cooperatively with the Sec machinery during membrane protein insertion in bacteria, archaea and eukaryotic organelles. Although the interaction between the bacterial SecYEG translocon and YidC has been observed in multiple studies, it is still unknown which domains of YidC are in contact with the SecYEG translocon. By in vivo and in vitro site-directed and para-formaldehyde cross-linking we identified the auxiliary transmembrane domain 1 of E.

View Article and Find Full Text PDF

Twin-arginine translocation (Tat) systems transport folded proteins across cellular membranes with the concerted action of mostly three membrane proteins: TatA, TatB, and TatC. Hetero-oligomers of TatB and TatC form circular substrate-receptor complexes with a central binding cavity for twin-arginine-containing signal peptides. After binding of the substrate, energy from an electro-chemical proton gradient is transduced into the recruitment of TatA oligomers and into the actual translocation event.

View Article and Find Full Text PDF

Mitochondria perform central functions in cellular bioenergetics, metabolism, and signaling, and their dysfunction has been linked to numerous diseases. The available studies cover only part of the mitochondrial proteome, and a separation of core mitochondrial proteins from associated fractions has not been achieved. We developed an integrative experimental approach to define the proteome of yeast mitochondria.

View Article and Find Full Text PDF

Developing pre-B cells in the bone marrow alternate between proliferation and differentiation phases. We found that protein arginine methyl transferase 1 (PRMT1) and B cell translocation gene 2 (BTG2) are critical components of the pre-B cell differentiation program. The BTG2-PRMT1 module induced a cell-cycle arrest of pre-B cells that was accompanied by re-expression of Rag1 and Rag2 and the onset of immunoglobulin light chain gene rearrangements.

View Article and Find Full Text PDF

The transcription factor STAT6 plays a key role in mediating signaling downstream of the receptors for IL-4 and IL-13. In B cells, STAT6 is required for class switch recombination to IgE and for germinal center formation during type 2 immune responses directed against allergens or helminths. In this study, we compared the transcriptomes and proteomes of primary mouse B cells from wild-type and STAT6-deficient mice cultured for 4 d in the presence or absence of IL-4.

View Article and Find Full Text PDF

The Z-disc is a protein-rich structure critically important for the development and integrity of myofibrils, which are the contractile organelles of cross-striated muscle cells. We here used mouse C2C12 myoblast, which were differentiated into myotubes, followed by electrical pulse stimulation (EPS) to generate contracting myotubes comprising mature Z-discs. Using a quantitative proteomics approach, we found significant changes in the relative abundance of 387 proteins in myoblasts differentiated myotubes, reflecting the drastic phenotypic conversion of these cells during myogenesis.

View Article and Find Full Text PDF