BACKGROUND: Medication documentation falls under the "7 rights" of medication administration, but strategies to prevent medication administration documentation errors (MADEs) related to route of administration are underreported in the literature. This study aimed to report the outcomes of a nurse-initiated protocol designed to prevent MADEs and align both actual and documented medication administration routes in hospitalized stroke patients with feeding tubes (FTs). METHODS: This was a retrospective descriptive study conducted at a Comprehensive Stroke Center and large academic medical center in the Western United States.
View Article and Find Full Text PDFObjective: We sought to evaluate accurate and reproducible detection of Myxobolus cerebralis (Mc), the causative agent of whirling disease, by using nested polymerase chain reaction (nPCR) and three previously established real-time quantitative PCR (qPCR) assays: K18S (Kelley 18S), C18S (Cavender 18S), and Hsp70 (heat shock protein 70). We used a "fit for purpose" approach combined with intra- and interlaboratory testing to identify a molecular testing method that would be equivalent to the currently accepted nPCR procedure for Mc.
Methods: Assay performance was compared using a combination of intra- and interlaboratory testing that used synthetic gBlocks along with naturally and experimentally infected fish tissue.
Detections of Renibacterium salmoninarum in Colorado USA fish hatcheries have become more frequent in recent years, including one disease outbreak that originated with a wild broodstock. Our objectives were to document the prevalence and distribution of R. salmoninarum in Colorado's wild trout fisheries, investigate variables that influence that distribution, and evaluate the effectiveness of common testing methods on non-anadromous trout.
View Article and Find Full Text PDFPiscine lactococcosis is an emergent bacterial disease that is associated with high economic losses in many farmed and wild aquatic species worldwide. Early and accurate detection of the causative agent of piscine lactococcosis is essential for management of the disease in fish farms. In this study, a TaqMan quantitative polymerase chain reaction (qPCR) targeting the 16S-23S rRNA internal transcribed spacer region was developed and validated.
View Article and Find Full Text PDFUsing the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood.
View Article and Find Full Text PDFThe rational design of semiconductor nanocrystals with well-defined surfaces is a crucial step towards the realization of next-generation photodetectors, and thermoelectric and spintronic devices. SnTe nanocrystals, as an example, are particularly attractive as a type of topological crystalline insulator, where surface facets determine their surface states. However, most of the available SnTe nanocrystals are dominated by thermodynamically stable {100} facets, and it is challenging to grow uniform nanocrystals with {111} facets.
View Article and Find Full Text PDFVacancy engineering is a crucial approach to manipulate physical properties of semiconductors. Here, we demonstrate that planar vacancies are formed in Sn1-xBixTe nanoribbons by using Bi dopants via a facile chemical vapor deposition. Through combination of sub-angstrom-resolution imaging and density functional theory calculations, these planar vacancies are found to be associated with Bi segregations, which significantly lower their formation energies.
View Article and Find Full Text PDFPt-CeO(x) nanowire (NW)/C electrocatalysts for the improvement of oxygen reduction reaction (ORR) activity on Pt were prepared by a combined process involving precipitation and coimpregnation. A low, 5 wt % Pt-loaded CeO(x) NW/C electrocatalyst, pretreated by an optimized electrochemical conditioning process, exhibited high ORR activity over a commercially available 20 wt % Pt/C electrocatalyst although the ORR activity observed for a 5 wt % Pt-loaded CeO(x) nanoparticle (NP)/C was similar to that of 20 wt % Pt/C. To investigate the role of a CeO(x) NW promotor on the enhancement of ORR activity on Pt, the Pt-CeO(x) NW interface was characterized by using hard X-ray photoelectron spectroscopy (HXPS), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS).
View Article and Find Full Text PDFUnderstanding the electrical properties of defect-free nanowires with different structures and their responses under deformation are essential for design and applications of nanodevices and strain engineering. In this study, defect-free zinc-blende- and wurtzite-structured InAs nanowires were grown using molecular beam epitaxy, and individual nanowires with different structures and orientations were carefully selected and their electrical properties and electromechanical responses were investigated using an electrical probing system inside a transmission electron microscope. Through our careful experimental design and detailed analyses, we uncovered several extraordinary physical phenomena, such as the electromechanical characteristics are dominated by the nanowire orientation, rather than its crystal structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2015
Pt-CeOx/C (1.5 ≤ x ≤ 2) electro-catalyst is one of the most promising cathode materials for use in polymer membrane electrolyte fuel cells. To clarify the microstructure of Pt-CeOx heterointerface, we prepared Pt-loaded CeOx thin film on conductive SrTiO3 single crystal substrate by using a stepwise process of pulse laser deposition method for the preparation of epitaxial growth CeOx film followed by an impregnation method which loaded the Pt particles on the CeOx film.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2015
Bi2Te3 polycrystalline whiskers consisting of interconnected nanoplates have been synthesized through chemical transformation from In2Te3 polycrystalline whisker templates assembled by nanoparticles. The synthesized Bi2Te3 whiskers preserve the original one-dimensional morphology of the In2Te3, while the In2Te3 nanoparticles can be transformed into the Bi2Te3 thin nanoplates, accompanied by the formation of high-density interfaces between nanoplates. The hot-pressed nanostructures consolidated from Bi2Te3 polycrystalline whiskers at 400 °C demonstrate a promising figure of merit (ZT) of 0.
View Article and Find Full Text PDFIndium selenides have attracted extensive attention in high-efficiency thermoelectrics for waste heat energy conversion due to their extraordinary and tunable electrical and thermal properties. This Review aims to provide a thorough summary of the structural characteristics (e.g.
View Article and Find Full Text PDFIn order to study the grain boundary's (GB's) blocking effect in lanthanum silicate electrolyte, high density Al-doped apatite-type lanthanum silicate was synthesized and characterized by impedance spectroscopy, scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. Microstructural characterization indicated that the GB's blocking effect was an intrinsic effect. Further microanalysis shows that the GB region is rich in La and poor in Si in comparing with the grain interior (GI).
View Article and Find Full Text PDFThe ordered structures in different doping levels (x = 0.1, 0.15, 0.
View Article and Find Full Text PDFPt-CeO(x)/C electrocatalysts for the improvement of oxygen reduction reaction (ORR) activity on cathode were prepared by a combined process of precipitation and co-impregnation methods. The Pt-CeO(x)/C electrocatalysts pretreated by the optimized electrochemical conditioning process showed high ORR activity as compared with homemade Pt/C electrocatalyst. Also, it showed high stability in the cyclic voltammetry (CV) test up to 1000 cycles into 0.
View Article and Find Full Text PDFZinc oxide is a prevalent industrial-age pigment that readily reacts with fatty acids in oil-based paints to form zinc carboxylates. Zinc stearate aggregates are associated with deterioration in late nineteenth and twentieth century paintings. The current study uses both conventional and synchrotron Fourier transform infrared spectroscopy (FT-IR) to investigate metal carboxylate composition in a range of naturally aged artists' oil paints and reference paint film draw-downs.
View Article and Find Full Text PDFAtomistic simulation based on an energy minimization technique has been carried out to investigate defect clusters of R(2)O(3) (R = La, Pr, Nd, Sm, Gd, Dy, Y, Yb) solid solutions in fluorite CeO(2). Defect clusters composed of up to six oxygen vacancies and twelve accompanied dopant cations have been simulated and compared. The binding energy of defect clusters increases as a function of the cluster size.
View Article and Find Full Text PDFPlasmid-mediated antibiotic resistance was first discovered in Edwardsiella ictaluri in the early 1990s, and in 2007 an E. ictaluri isolate harboring an IncA/C plasmid was recovered from a moribund channel catfish Ictalurus punctatus infected with the bacterium. Due to the identification of multidrug resistance plasmids in aquaculture and their potential clinical importance, we sought to determine whether the modified live E.
View Article and Find Full Text PDFThis study aimed to evaluate the in vivo remineralization of acid-etched enamel in non-brushing areas as influenced by fluoridated orthodontic adhesive and toothpaste. One hundred and twenty teeth from 30 volunteers were selected. The teeth were assigned to four treatments: no treatment (negative control); 37% phosphoric acid-etching (PAE) (positive control); PAE + resin-modified glass ionomer cement (RMGIC); and, PAE + composite resin.
View Article and Find Full Text PDFGeMn/Ge epitaxial 'superlattices' grown by molecular beam epitaxy with different growth conditions have been systematically investigated by transmission electron microscopy. It is revealed that periodic arrays of GeMn nanodots can be formed on Ge and GaAs substrates at low temperature (approximately 70°C) due to the matched lattice constants of Ge (5.656 Å) and GaAs (5.
View Article and Find Full Text PDFThe nano-domain, with short-range ordered structure, has been widely observed in rare-earth-doped ceria. Atomistic simulation has been employed to investigate the ordering structure of the nano-domain, as a result of aggregation and segregation of dopant cations and the associated oxygen vacancies in gadolinium-doped ceria. It is found that the binding energy of defect cluster increases as a function of cluster size, which provides the intrinsic driving force for the defect cluster growth.
View Article and Find Full Text PDFThe microstructure and local chemistry of the interface between the screen-printed La(0.6)Sr(0.4)Co(0.
View Article and Find Full Text PDFThe microstructures and spatial distributions of constituent elements at the anode in solid oxide fuel cells (SOFCs) have been characterized by analytical transmission electron microscopy (TEM). High resolution TEM observations demonstrate two different types of superstructure formation in grain interiors and at grain boundaries. Energy-filtered TEM elemental imaging qualitatively reveals that mixture zones exist at metal-ceramic grain boundaries, which is also quantitatively verified by STEM energy dispersive X-ray spectroscopy.
View Article and Find Full Text PDFBiotype 2 (BT2) variants of the bacterium Yersinia ruckeri are an increasing disease problem in U.S. and European aquaculture and have been characterized as serovar 1 isolates that lack both peritrichous flagella and secreted phospholipase activity.
View Article and Find Full Text PDFTo understand the ceria promotion effect of Pt-CeO(2)/C catalysts on methanol oxidation, microstructural and metal-oxide interactions of Pt-CeO(2)/C catalysts with an atomic ratio of Pt/Ce between 0.14 and 1.4 were systematically examined using high-resolution transmission electron microscopy and electron energy loss spectroscopy (EELS).
View Article and Find Full Text PDF