Publications by authors named "Dreja K"

Background: Many pathological processes can disrupt the integrity of the glomerular capillary wall and cause a massive leakage of protein, resulting in nephrotic syndrome (NS). Clinical parameters such as age, sex, renal function, presence of diabetes, and how NS is defined influence the spectrum of underlying diseases. In this study, we examine how these parameters interact.

View Article and Find Full Text PDF

Background: There is a close association between non-alcoholic fatty liver disease (NAFLD) and prevalent chronic kidney disease (CKD). Few longitudinal studies exist. No previous study has investigated to what extent CKD affects mortality in biopsy-proven NAFLD.

View Article and Find Full Text PDF

Occlusive vascular disease is a widespread abnormality leading to lethal or debilitating outcomes such as myocardial infarction and stroke. It is part of atherosclerosis and is evoked by clinical procedures including angioplasty and grafting of saphenous vein in bypass surgery. A causative factor is the switch in smooth muscle cells to an invasive and proliferative mode, leading to neointimal hyperplasia.

View Article and Find Full Text PDF

Loss of the smooth muscle contractile phenotype is critical in atherosclerosis and in restenosis after angioplasty, but its early signals are incompletely understood. In this study, we have explored the role of transient receptor potential canonical (TRPC) proteins, which have been suggested to mediate store-operated Ca2+ entry (SOCE). Contractility of rat cerebral arteries in organ culture is preserved for several days, whereas SOCE is increased.

View Article and Find Full Text PDF

The reactivity of the vascular wall to endothelin-1 (ET-1) is influenced by cholesterol, which is of possible importance for the progression of atherosclerosis. To elucidate signaling steps affected, the cholesterol acceptor methyl-beta-cyclodextrin (mbetacd, 10 mmol/L) was used to manipulate membrane cholesterol and disrupt caveolae in intact rat arteries. In endothelium-denuded caudal artery, contractile responsiveness to 10 nmol/L ET-1 (mediated by the ETA receptor) was reduced by mbetacd and increased by cholesterol.

View Article and Find Full Text PDF

Objective: This study assessed the role of cholesterol-rich membrane regions, including caveolae, in the regulation of arterial contractility. Methods and Results- Rat tail artery devoid of endothelium was treated with the cholesterol acceptor methyl-beta-cyclodextrin, and the effects on force and Ca2+ handling were evaluated. In cholesterol-depleted preparations, the force responses to alpha1-adrenergic receptors, membrane depolarization, inhibition of myosin light chain phosphatase, and activation of G proteins with a mixture of 20 mmol/L NaF and 60 micro mol/L AlCl3 were unaffected.

View Article and Find Full Text PDF

Chronic hypoxia is a clinically important condition known to cause vascular abnormalities. To investigate the cellular mechanisms involved, we kept rings of a rat tail artery for 4 days in hypoxic culture (HC) or normoxic culture (NC) (PO(2) = 14 vs. 110 mmHg) and then measured contractility, oxygen consumption (JO(2)), and lactate production (J(lac)) in oxygenated medium.

View Article and Find Full Text PDF

Inhibition of oxidative metabolism is often found to decrease contractility of systemic vascular smooth muscle, but not to reduce global [Ca(2+)](i). In the present study, we probe the hypothesis that it is associated with an altered pattern of intracellular Ca(2+) oscillations (waves) influencing force development. In the rat tail artery, mitochondrial inhibitors (rotenone, antimycin A, and cyanide) reduced alpha(1)-adrenoceptor-stimulated force by 50% to 80%, but did not reduce global [Ca(2+)](i).

View Article and Find Full Text PDF

We have investigated possible signaling pathways coupled to injury-induced ERK1/2 activation and the subsequent initiation of vascular rat smooth muscle cell migration and proliferation. Aortic smooth muscle cells were cultured to confluency and subjected to in vitro injury under serum-free conditions. In fluo-4-loaded cells, injury induced a rapid wave of intracellular Ca(2+) release that propagated about 200 microm in radius from the injured zone, reached a peak in about 20 s, and subsided to the baseline within 2 min.

View Article and Find Full Text PDF

Ca2+ inflow via store-operated Ca2+ channels was investigated in rings of rat tail and basilar arteries kept in serum-free organ culture, which is known to preserve the contractility of the vascular smooth muscle. After culture for 3-4 days, Ca2+ release from intracellular stores in response to caffeine (20 mM) was augmented 2- to 4-fold. Following depletion of intracellular Ca2+ stores by caffeine and thapsigargin (10 microM), addition of Ca2+ (2.

View Article and Find Full Text PDF

The roles of intracellular Ca(2+) stores and ryanodine (Ry) receptors for vascular Ca(2+) homeostasis and viability were investigated in rat tail arterial segments kept in organ culture with Ry (10 - 100 microM) for up to 4 days. Acute exposure to Ry or the non-deactivating ryanodine analogue C(10)-O(eq) glycyl ryanodine (10 microM) eliminated Ca(2+) release responses to caffeine (20 mM) and noradrenaline (NA, 10 microM), whereas responses to NA, but not caffeine, gradually returned to normal within 4 days of exposure to RY: Ry receptor protein was detected on Western blots in arteries cultured either with or without RY: Brief Ca(2+) release events (sparks) were absent after culture with Ry, whereas Ca(2+) waves still occurred. The propagation velocity of waves was equal ( approximately 19 microm s(-1)) in tissue cultured either with or without RY: Inhibition of Ca(2+) accumulation into the sarcoplasmic reticulum (SR) by culture with caffeine (5 mM), cyclopiazonic acid or thapsigargin (both 10 microM) decreased contractility due to Ca(2+)-induced cell damage.

View Article and Find Full Text PDF

Increased intraluminal pressure of the rat portal vein in vivo causes hypertrophy and altered contractility in 1 to 7 days. We have used organ cultures to investigate mechanisms involved in this adaptation to mechanical load. Strips of rat portal vein were cultured for 3 days, either undistended or loaded by a weight.

View Article and Find Full Text PDF

Ca2+ sensitization of smooth muscle contraction involves the small GTPase RhoA, inhibition of myosin light chain phosphatase (MLCP) and enhanced myosin regulatory light chain (LC20) phosphorylation. A potential effector of RhoA is Rho-associated kinase (ROK). The role of ROK in Ca2+ sensitization was investigated in guinea-pig ileum.

View Article and Find Full Text PDF

To investigate the Ca2+-dependent plasticity of sarcoplasmic reticulum (SR) function in vascular smooth muscle, transient responses to agents releasing intracellular Ca2+ by either ryanodine (caffeine) or D-myo-inositol 1,4,5-trisphosphate [IP3; produced in response to norepinephrine (NE), 5-hydroxytryptamine (5-HT), arginine vasopressin (AVP)] receptors in rat tail arterial rings were evaluated after 4 days of organ culture. Force transients induced by all agents were increased compared with those induced in fresh rings. Stimulation by 10% FCS during culture further potentiated the force and Ca2+ responses to caffeine (20 mM) but not to NE (10 microM), 5-HT (10 microM), or AVP (0.

View Article and Find Full Text PDF

The polycations spermine, neomycin and polylysine potentiated Ca(2+)-activated force in beta-escin permeabilized guinea-pig ileum strips. The effect was inhibited by the calmodulin antagonists trifluoperazine, mastoparan and W13. Potentiation was slow or absent in chi-toxin permeabilized strips, indicating dependence on penetration of the polycations into cells.

View Article and Find Full Text PDF