Publications by authors named "Dreischarf M"

Background: Minimally invasive surgical techniques for sacroiliac joint (SIJ) fixation have the potential to reduce risk and improve patient outcomes, but evidence remains limited. This interim analysis presents initial findings from an ongoing prospective study evaluating the safety and efficacy of the Catamaran System.

Methods: The primary endpoint of success at 6 months was defined as a ≥20 mm improvement in SIJ pain (Visual Analog Scale, VAS), no neurologic worsening, absence of device-related serious adverse events (SAEs), and no surgical reintervention.

View Article and Find Full Text PDF

Introduction: Spinal measurements play an integral role in surgical planning for a variety of spine procedures. Full-length imaging eliminates distortions that can occur with stitched images. However, these images take radiologists significantly longer to read than conventional radiographs.

View Article and Find Full Text PDF

Study Design: Retrospective, mono-centric cohort research study.

Objectives: The analysis of cervical sagittal balance parameters is essential for preoperative planning and dependent on the physician's experience. A fully automated artificial intelligence-based algorithm could contribute to an objective analysis and save time.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to evaluate the accuracy of a fully automated deep learning algorithm for analyzing sagittal balance in adult spinal deformity (ASD) using preoperative and postoperative radiographs.
  • - The algorithm's measurements were compared to validated manual measurements, demonstrating strong consistency with intra-class correlation coefficients ranging from 0.71 to 0.99 for preoperative and 0.72 to 0.96 for postoperative assessments, with detection rates of 91.5% and 84%, respectively.
  • - This research is significant as it shows the potential for implementing high-accuracy automated analyses in clinical settings, specifically for the challenging assessment of sagittal balance in patients with ASD.
View Article and Find Full Text PDF

With the advent of artificial intelligence and Big Data - projects, the necessity for a transition from analog medicine to modern-day solutions such as cloud computing becomes unavoidable. Even though this need is now common knowledge, the process is not always easy to start. Legislative changes, for example at the level of the European Union, are helping the respective healthcare systems to take the necessary steps.

View Article and Find Full Text PDF

The precise and accurate measurement of implant wear, acetabular cup anteversion and inclination from routine anterior-posterior radiographs still poses a challenge. Current approaches suffer from time-consuming procedures accompanied by low and observer-dependent accuracy and precision. We present and validate a novel, automated method for determining total hip arthroplasty parameters by comparing its accuracy and precision with methods in contemporary scientific literature.

View Article and Find Full Text PDF

Study Design: Retrospective, mono-centric cohort research study.

Objectives: The purpose of this study is to validate a novel artificial intelligence (AI)-based algorithm against human-generated ground truth for radiographic parameters of adolescent idiopathic scoliosis (AIS).

Methods: An AI-algorithm was developed that is capable of detecting anatomical structures of interest (clavicles, cervical, thoracic, lumbar spine and sacrum) and calculate essential radiographic parameters in AP spine X-rays fully automatically.

View Article and Find Full Text PDF

The assessment of the knee alignment using standing weight-bearing full-leg radiographs (FLR) is a standardized method. Determining the load-bearing axis of the leg requires time-consuming manual measurements. The aim of this study is to develop and validate a novel algorithm based on artificial intelligence (AI) for the automated assessment of lower limb alignment.

View Article and Find Full Text PDF

Objective: The analysis of sagittal alignment by measuring spinopelvic parameters has been widely adopted among spine surgeons globally, and sagittal imbalance is a well-documented cause of poor quality of life. These measurements are time-consuming but necessary to make, which creates a growing need for an automated analysis tool that measures spinopelvic parameters with speed, precision, and reproducibility without relying on user input. This study introduces and evaluates an algorithm based on artificial intelligence (AI) that fully automatically measures spinopelvic parameters.

View Article and Find Full Text PDF

Purpose: Sagittal balance (SB) plays an important role in the surgical treatment of spinal disorders. The aim of this research study is to provide a detailed evaluation of a new, fully automated algorithm based on artificial intelligence (AI) for the determination of SB parameters on a large number of patients with and without instrumentation.

Methods: Pre- and postoperative sagittal full body radiographs of 170 patients were measured by two human raters, twice by one rater and by the AI algorithm which determined: pelvic incidence, pelvic tilt, sacral slope, L1-S1 lordosis, T4-T12 thoracic kyphosis (TK) and the spino-sacral angle (SSA).

View Article and Find Full Text PDF

The assessment of spinal shape and mobility is of great importance for long-term therapy evaluation. As frequent radiation should be avoided, especially in children, non-invasive measurements have gained increasing importance. Their comparability between each other however stays elusive.

View Article and Find Full Text PDF

Finite element models are frequently used to study lumbar spinal biomechanics. Deterministic models are used to reflect a certain configuration, including the means of geometrical and material properties, while probabilistic models account for the inherent variability in the population. Because model parameters are generally uncertain, their predictive power is frequently questioned.

View Article and Find Full Text PDF

Disc hydration is controlled by fluid imbibition and exudation and hence by applied load magnitude and history, internal osmotic pressure and disc conditions. It affects both the internal load distribution and external load-bearing of a disc while variations therein give rise to the disc time-dependent characteristics. This study aimed to evaluate the effect of changes in compression preload magnitude on the disc axial cyclic compression stiffness under physiological loading.

View Article and Find Full Text PDF

Improved knowledge on spinal loads and trunk muscle forces may clarify the mechanical causes of various spinal diseases and has the potential to improve the current treatment options. Using an inverse dynamic musculoskeletal model, this sensitivity analysis was aimed to investigate the influence of lumbar spine rhythms and intra-abdominal pressure on the compressive and shear forces in L4-L5 disc and the trunk muscle forces during upper body inclination. Based on in vivo data, three different spine rhythms (SRs) were used along with alternative settings (with/without) of intra-abdominal pressure (IAP).

View Article and Find Full Text PDF

The individual lumbar lordosis and lumbar motion have been identified to play an important role in pathogenesis of low back pain and are essential references for preoperative planning and postoperative evaluation. The clinical "gold-standard" for measuring lumbar lordosis and its motion are radiological "snap-shots" taken while standing and during upper-body flexion and extension. The extent to which these clinically assessed values characterise lumbar alignment and its motion in daily life merits discussion.

View Article and Find Full Text PDF

Spinal loads are recognized to play a causative role in back disorders and pain. Knowledge of lumbar spinal loads is required in proper management of various spinal disorders, effective risk prevention and assessment in the workplace, sports and rehabilitation, realistic testing of spinal implants as well as adequate loading in in vitro studies. During the last few decades, researchers have used a number of techniques to estimate spinal loads by measuring in vivo changes in the intradiscal pressure, body height, or forces and moments transmitted via instrumented vertebral implants.

View Article and Find Full Text PDF

The loads between adjacent vertebrae can be generalised as a single spatial force acting at the intervertebral centre of reaction. The exact position in vivo is unknown. However, in rigid body musculoskeletal models that simulate upright standing, the position is generally assumed to be located at the discs' centres of rotation.

View Article and Find Full Text PDF

Intradiscal pressure (IDP) is an essential biomechanical parameter and has been the subject of numerous in vivo and in vitro investigations. Although currently available sensors differ in size and measurement principles, no data exist regarding inter-sensor reliability in measuring IDP. Moreover, although discs of various species vary significantly in size and mechanics, the possible effects of sensor insertion on the IDP have never been investigated.

View Article and Find Full Text PDF

The repeated lifting of heavy weights has been identified as a risk factor for low back pain (LBP). Whether squat lifting leads to lower spinal loads than stoop lifting and whether lifting a weight laterally results in smaller forces than lifting the same weight in front of the body remain matters of debate. Instrumented vertebral body replacements (VBRs) were used to measure the in vivo load in the lumbar spine in three patients at level L1 and in one patient at level L3.

View Article and Find Full Text PDF

In vivo during the day, intervertebral discs are loaded mainly in compression causing fluid and height losses that are subsequently fully recovered overnight due to fluid inflow under smaller compression. However, in vitro, fluid flow through the endplates, in particular fluid imbibition, is hampered possibly by blood clots formed post mortem. Despite earlier in vitro studies, it remains yet unclear if and how fluid flow conditions in vitro could properly emulate those in vivo.

View Article and Find Full Text PDF

Frequent upper body bending is associated with low back pain (LBP). The complex flexion movement, combining lumbar and pelvic motion, is known as "lumbopelvic rhythm" and can be quantified by dividing the change in the lumbar spine curvature by the change in pelvic orientation during flexion movement (L/P ratio). This parameter is clinically essential for LBP prevention, for diagnostic procedures and therapy; however, the effects of age and gender, in detail, are unknown.

View Article and Find Full Text PDF

Total disc replacement has been introduced to overcome negative side effects of spinal fusion. The amount of iatrogenic distraction, preoperative disc height and implant positioning have been considered important for surgical success. However, their effect on the postoperative range of motion (RoM) and loading of the facets merits further discussion.

View Article and Find Full Text PDF

The quantification of work-related musculoskeletal risk factors is of great importance; however, only a few tools allow objective, unrestricted measurements of spinal posture and motion in workplaces. This study was performed to evaluate the applicability of the Epionics system in a sedentary workplace. The system is mobile and wireless and assesses lumbar lordosis, pelvic orientation and spinal motion, without restricting subjects in their movements.

View Article and Find Full Text PDF

Knowledge of in vivo spinal loads and muscle forces remains limited but is necessary for spinal biomechanical research. To assess the in vivo spinal loads, measurements with telemeterised vertebral body replacements were performed in four patients. The following postures were investigated: (a) standing with arms hanging down on sides, (b) holding dumbbells to subject the patient to a vertical load, and (c) the forward elevation of arms for creating an additional flexion moment.

View Article and Find Full Text PDF